• Title/Summary/Keyword: combustion synthesis

Search Result 273, Processing Time 0.026 seconds

Cycling Properties of 80wt% AB2-15wt% Mg-5wt% Mm Metal Hydride made by Hydriding Combustion Synthesis (자전연소합성법으로 제조한 80wt% AB2-15wt% Mg-5wt% Mm 금속수소화물의 cycling특성)

  • Hur, Tae-Hong;Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.634-640
    • /
    • 2011
  • The effect of cycling on the absorption and desorption characteristics of the 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm system was investigated. The material was made by Hydrogen Combustion Synthesis. The cycling experiment was performed at 298 K, 30 atm for 15 min. During the reaction time, the amount of absorption was fully desorbed. After the full activation, the hydrogen storage capacity was 1.57 wt% and the capacity was maintained until 50 cycles. And the reaction rate does not change with an increase in the number of cycles. This material has good durability and reversible feature.

Combustion Synthesis of YAG:Ce Phosphor with Teflon (Teflon을 이용한 YAG:Ce 형광체 합성)

  • Yeon, Jung Woon;Won, Chang Whan;Won, Hyung Il;Nersisyan, H.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.439-443
    • /
    • 2012
  • YAG:Ce phosphor were prepared in a self-propagating high-temperature synthesis (SHS) using a $1.5Y_2O_3+2.5Al_2O_3+0.116CeO_2+3.0KClO_3+kCO(NH_2)_2+m(C_2F_4)_n$ precursor mixture. The heat for the combustion propagation was provided by the reaction of a $KClO_3+CO(NH_2)_2+(C_2F_4)n$ mixture. Pure-phase YAG phosphor was synthesized at the combustion temperature of $1210^{\circ}C$ from k=3.6 mole and m=0.3 mole. The as-prepared YAG:Ce phosphor had a particle size of $2-10{\mu}m$. The addition of Teflon to the precursor mixture increased the YAG particle size and its luminescent intensity. The emission peak of the YAG phosphor was blue-shifted with an increase of Teflon concentration.

Formation and Growth Mechanisms of Flame-Synthesized Carbon Nanotubes and Nanofibers (화염합성 시의 탄소나노튜브와 나노섬유의 생성 및 성장 메커니즘)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Kang, Kyung-Tae;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Two stainless steel plates coated with $Ni(NO_3){_2}$ were folded with each other and used as a catalytic metal substrate. Carbon nanotubes and nanofibers with diameters of 20 - 60nm were found on the substrate. From the TEM-EDS analyses, most of the nanomaterials turned out to be Nicatalyzed. Carbon nanotubes were formed on the substrate in the region ranging from about 1,400K to 900K. The formation mechanisms of nanotubes and nanofibers were similar. The synthesis temperature of the nanofibers was lower than that of the nanotubes. The higher synthesis temperature of nanotubes might enhance the activity of the catalyst metal and produce more condensed carbons. The accumulated graphite layers led to form compartments to release the compressive stress in the layers. The growth of carbon nanotubes was bamboo-shaped showing compartments in the inside hollow. The distances between those compartments represented the growth rate that depended on the synthesis temperature.

  • PDF

Temperature Profile Analysis of $Ti5_Si_3$ in Self-Propagating High Temperature Synthesis (SHS 법에 의한 $Ti5_Si_3$의 합성시 온도 Profile 분석)

  • 김도경;이형직;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 1995
  • An analysis of the use of temperature profiles in the determination of the kinetic parameters of combustion synthesis of Ti5Si3 were investigated. From profile analysis, an apparent activation energy of 12KJ/mol was calculated. The Maximum heating rate achieved during 10wt% Ti5Si3 reaction by the product dilution method was approximately $1.5\times$104 K/s. Coupling this value with the measured wave velocity of 7.02 cm/s yields a maximum thermal gradient of 2.14$\times$103 K/cm. The value of tr (=t*) was calculated to be 1.2$\times$10-1 s and the value of td (=tx) was calculated to be 32.89 s. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.59$\times$10 $\textrm{cm}^2$/s. From these analysis, the power function, G, was also calculated.

  • PDF

Preparation of WC Powders by SHS Process in the Presence of Alkali Salts (자전연소합성법에서의 알칼리염을 이용한 WC 분말의 제조)

  • Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.152-156
    • /
    • 2007
  • Tungsten carbide powder was synthesized by SHS (self-propagating high-temperature synthesis). Except $WO_{3}$, each concentration of raw material ($WO_{3},\;Mg,\;NaCl,\;Na_{2}CO_{3},\;C$) was investigated. Final product was characterized by XRD and SEM. X-ray data demonstrated that the $NaCl+Na_{2}CO_{3}$ combined mixture has superiority in the WC formation process. Single phase and submicrometer WC powder was synthesized at the temperature below $1600^{\circ}C$. The role of sodium salts in combustion process was discussed, and chemical mechanism of WC formation was proposed. WC powder prepared by salt-assisted combustion synthesis has a size $0.2{\sim}3\;{\mu}m$ and low agglomeration degree.

Synthesis of Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate by an Inverse Diffusion Flame (역확산화염과 촉매금속 기판을 이용한 탄소 나노튜브와 나노섬유의 연소합성)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.21-28
    • /
    • 2002
  • Synthesis of carbon nanotubes and nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. Multi-walled carbon nanotubes and nanofibers with a diameter range of 30-80nm were found on the substrate. The temperature of the substrate played an important role in the formation of carbon nanotubes and nanofibers. The pathway to the nanotubes and nanofibers could be determined by the temperature history of the substrate.

  • PDF

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

Improved White Light Emitting Diode Characteristics by Coating GdAG:Ce Phosphor

  • Joshi, Charusheela;Yadav, Pooja;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • White LEDs, based on blue LED chips coated with a yellow emitting phosphor (YAG:Ce), have several disadvantages. In this paper, we report the improvement in CRI [Color Rendition Index] using $GdAl_5O_{12}:Ce$ (GdAG:Ce) and related phosphors for blue LEDs. A modified combustion synthesis route using mixed fuel was used for synthesis route. By using this procedure, we formed the desired compounds in a single step. LEDs were then fabricated by coating the blue LED chips (CREE 470 nm, 300 micron) with the GdAG:Ce phosphor dispersed in epoxy resin. The CRI typically between 65~70 for the YAG:Ce based LED was improved to 87 for LEDs fabricated from the Gd(Al,Ga)G phosphors.

Flame Synthesis of Carbon Nanofibers using SUS304 Substrates (촉매금속 기판을 사용한 탄소나노섬유의 화염합성)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • Synthesis of carbon nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was observed. Stainless steel plates were used for the catalytic metal substrate. The effects of radial distance and residence time of the substrate were investigated. The role of hydrocarbon composition in the fuel was also viewed. Nanofibers with a diameter range of 30-70nm were found on the substrate. The carbon nanofibers were formed and grown in the region from 4 to 5.5mm from the central axis of a flame outside of the visible flame front in the radial direction. The minimum residence time required for the formation of carbon nanofibers were about 20 seconds, and over 60 seconds were required for the full-scale growth. The characteristic time of the formation of carbon nanofibers was much shorter than that of the substrate temperature growth. In this study, the variation in hydrocarbon composition had no significant effect on the formation and growth of the carbon nanofibers.

  • PDF

Effects of Catalyst Metal and Substrate Temperature on a Flame Synthesis of Carbon Nanomaterials (화염을 이용한 탄소나노튜브와 나노섬유의 합성에 미치는 촉매금속 및 기판온도의 영향)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of catalyst metal particles were investigated through $Fe(NO_3){_3}$ (ferric nitrate, nonahydrate) and $Ni(NO_3){_2}$ (nickel nitrate, hexahydrate). Carbon nanotubes and nanofibers with diameters of $30{\sim}70nm$ were found on the substrate for the case of using SUS304 substrates only and using them with metal nitrates. In case of using metal nitrates, due to the easy activation of the metal particles, the formation and growth of carbon nanomaterials were occurred in the lower temperature region than that of using SUS304 substrates only.

  • PDF