• 제목/요약/키워드: combustion rate

검색결과 1,993건 처리시간 0.027초

CNG 직접분사식 연소기에서의 열량해석(1) :균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.

하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구 (A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor)

  • 최인찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

가압열중량분석기를 이용한 국내무연탄의 연소특성 해석 (Combustion Characteristics of Domestic Anthracite with High-Pressure TGA)

  • 류호정;한근희;진경태;이계봉;최정후
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.243-252
    • /
    • 2001
  • 가압열중량분석기를 이용하여 비등온법에 의해 상온부터 100$0^{\circ}C$까지 온도를 상승시키면서 압력(1~l6기압)과 승온속도(heating rate, 15, 20, $25^{\circ}C$/min)의 변화에 따른 국내무연탄의 연소반응특성을 측정 및 해석하였다. 주어진 승온속도에서 압력이 증가함에 따라 반응속도가 증가하였으며 이와 같은 경향은 압력 증가에 따른 활성화에너지의 감소 때문으로 사료되었다. 압력이 1기압에서 16기압으로 증가함에 따라 Freeman과 Carroll$^{[11]}$ method에 의해 결정된 반응차수는 1.04에서 1.30차까지 선형적으로 증가하였으며 활성화에너지는 47.37㎉/mol에서 14.42kca1/mol로 감소하였다.

  • PDF

노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구 (Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구 (A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine)

  • 이민호;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

배기가스 재순환을 적용한 희박-과농 연소시스템의 공해물질 배출특성 연구 (The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation)

  • 오휘성;이창언;유병훈
    • 한국연소학회지
    • /
    • 제20권2호
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the CH4/air lean-rich combustion system with exhaust gas recirculation (EGR) was investigated to explore the potential for lowering pollutant emissions. To achieve this purpose, experiments of lean-rich combustion system with EGR were conducted to measure the changes in the characteristics of the pollutant emission and flame shape with various equivalence ratios and EGR rates. Here, this study was applied to the fuel distribution ratio of 3:1 for the formation of the lean and rich flames. Additionally, the results were compared with $CH_4$/air lean premixed combustion system. The results show that flame shape of lean-rich combustion system was determined by lean and rich equivalence ratios (${\Phi}_L$ and ${\Phi}_R$) and stratified flame was formed with increasing ${\Phi}_R$. According to the pollutant emission characteristics based on experimental results, the NOx and CO emission index (EINOx and EICO) decreased with increasing EGR rate. Especially, in the range needed to form a stable flame, the reduction rates of EINOx and EICO were approximately 47% and 48% for an EGR rate of 25%, global equivalence ratio of 0.85 and ${\Phi}_L$ of 0.80 compared with lean premixed combustion system (${\Phi}$ = 0.78).

질소희석과 압력이 석탄가스 비예혼합 화염구조와 소염 스칼라 소산율에 미치는 영향 해석 (Effects of Fuel-Side dilution and Pressure on Structure and Extinction Scalar Dissipation Rate of Syngas Nonpremixed Flames)

  • 박상운;신영준;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.61-62
    • /
    • 2012
  • The present study has numerically investigated the effects of fuel-side dilution and pressure on flame structure and extinction scalar dissipation rate of turbulent syngas nonpremixedd flames. Numerical results indicate that for highly diluted case, peak temperature is decreased and stoichiometric mixture fraction is increased. By decreasing the pressure and the nitrgen dilution levelcreased, the extinction scalar dissipation rate is increased.

  • PDF

연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석 (Numerical study of a conical MILD combustor with varing the fuel flow rate)

  • 김태권
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD(Moderate and Intense Low Oxygen Dilution) 연소는 열효율 향상과 유해배출가스 저감의 상반된 관계를 해결하기 위한 하나의 각광받는 기술이다. 연소가스의 재순환을 이용하여 고온 연소시에 질소산화물을 낮게 유지함과 동시에 연소로 내부온도를 균일화함으로써 열효율을 향상시킬 수 있는 기술이다. 본 연구는 실험실 규모의 노에서 원추형 MILD 연소기의 연소특성을 나타내고 있다. 연구의 조건은 공기의 유량은 일정하게 하면서 가스 연료 유량을 변화시켜 당량비를 변화시켰다. 이 결과 노 내에서 MILD 연소영역이 잘 구현되었고, 당량비 0.69~0.83의 범위에 걸쳐서 노(爐)내에서의 온도와 배출가스의 농도가 각각 예측되었다. 이 당량비 구간에서 최고화염온도 영역과 주 반응영역에서의 온도차가 약 $300^{\circ}C$의 안정적인 화염 영역의 존재를 확인하였다.