• 제목/요약/키워드: combustion rate

검색결과 1,988건 처리시간 0.032초

연소 변수가 수증기-메탄 개질기의 특성에 미치는 영향 (The Effects of Combustion Parameters on the Characteristics of a Steam-Methane Reformer)

  • 이재성;김호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.29-31
    • /
    • 2012
  • The effects of combustion parameters on the characteristics of a steam-methane reformer. The reformer system was numerically simulated using a simplified two-dimensional axisymmetric model domain with an appropriate user-defined function. The fuel ratio, defined as the ratio of methane flow rate in the combustor to that in the reactor, was varied from 20 to 80%. The equivalence ratio was changed from 0.5 to 1.0. The results indicated that as the fuel ratio increased, the production rates of hydrogen and carbon monoxide increased, although their rates of increase diminished. In fact, at the highest heat supply rates, hydrogen production was actually slightly decreased. Simulations showed that equivalence ratio of 0.7 yielded the highest steam-methane mixture temperature despite a 43% higher air flow rate than the stoichiometric flow rate. This means that the production of hydrogen and carbon monoxide can be increased by adjusting the equivalence ratio, especially when the heat supply is insufficient.

  • PDF

2중 Wiebe 연소모델을 이용한 2행정 대형 선박용 디젤엔진의 성능예측 (The prediction of Performance in Two-Stroke Large Marine Diesel Engine Using Double-Wiebc Combustion Model)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.637-653
    • /
    • 1999
  • In this study well-known burned rate expressions of Weibe function and double Wiebe function have been adopted for the combustion analysis of large two stroke marine diesel engine. A cycle simulation program was also developed to predict the performance and pressure waves in pipes using validated burned rate function,. Levenberg-Marquardt iteration method was applied to cali-brate the shape coefficients included in double Wiebe function for the performance prediction of two-stroke marine diesel engine. As a result the performance prediction using double Wiebe func-tion is well correlated withexperimental dta with the accuracy of 5% and pressure waves in intake and transport pipe are well predicted. From the results of this study it can be confirmed that the shape coefficients of burned rate function should be modified using the numerical method suggested for the accurated prediction and double Wiebe function is more suitable than Wiebe func-tion for combustion analysis of large two stroke marine engine.

  • PDF

비연소성 다이아프램의 설치 위치에 따른 하이브리드 연소기의 연소 특성 연구 (A Study on Combustion Characteristic of the Hybrid Combustor with Non-Combustible Diaphragm Position)

  • 김학철;문근환;문희장;성홍계;김진곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.163-166
    • /
    • 2012
  • 본 연구에서는 비연소성 다이아프램의 설치 위치에 따른 하이브리드 연소기의 후퇴율 및 연소효율 특성에 관한 연소실험을 수행하였다. 고체 연료의 전방으로부터 25%, 50%에 설치하였을 때 설치 위치에 따른 후퇴율 및 연소 효율은 큰 차이가 없었으며 다이아프램 설치로 인한 효과는 국부적인 영향을 주었을 것으로 판단된다.

  • PDF

액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구 (Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application)

  • 류철성;백운봉;최환석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

역확산 다공 연소기에서 $CO_2$ 첨가에 따른 순산소 연소 특성에 관한 실험적 연구 (Experimental Study on the Effect of $CO_2$ Feeding on the Oxygen Combustion Characteristics by using Inverse Type Multi-hole Burner)

  • 서정일;곽영태;배수호;홍정구;이은도;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.162-169
    • /
    • 2005
  • The performance of oxygen combustion with $CO_2$ feeding was investigated in a pyrex tube furnace. The inverse type multi-hole burner was used for improving mixing and wide operating range. It introduced oxygen, fuel, and oxygen, respectively, from center tube to outer tubes. Oxygen combustion characteristics with excess oxygen ratio, oxygen feeding ratio, and $CO_2$ feeding flow rate were studied to optimize the operating condition and to apply the oxygen combustion with recirculation of flue gas to a real furnace. This paper presents results on the effect of $CO_2$ feeding flow rate on the structure of the flames and concentrations of NO and CO emissions. The visible flame length was shortest due to well mixing between fuel and oxygen when the oxygen feeding ratio was 0.25. The NO emission was reduced drastically regardless of excess oxygen ratio when the $CO_2$ feeding flow rate was larger than 15 lpm. The CO emission is varied by changing the $CO_2$ feeding flow rate but the CO emission characteristics is highly affected by excess oxygen ratio. When the excess oxygen ratio is below ${\lamda}=1.1$, the CO emission increased as the $CO_2$ feeding flow rate increased.

  • PDF

정적 연소실내 혼합기 분포가 연소특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Mixture Distribution in the Constant Volume Combustion Chamber on the Combustion Characteristics)

  • 이기형;이창희;안용흠
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.10-18
    • /
    • 2004
  • It is well known that the stratified charge combustion has many kind of advantages to combustion characteristics, such as higher thermal efficiency and less CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can be caused low fuel consumption, it is produced the high unburned hydrocarbon and soot levels because of different equivalence ratio in the combustion chamber. Moreover it has a lot of possibility of low output and misfire if the mixture gas would not be in existence around the spark plug. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of locally mixture gas distribution according to control the direct injection and premixed injection in the chamber were examined experimentally. In addition, the effects of turbulence on stratified charge combustion process were observed by schlieren photography.

디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시- (A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel-)

  • 조진호;김형섭;박정률
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.180-188
    • /
    • 1992
  • 본 연구에서는 와류실식 디젤 기관에 경유-물의 유화연료 사용시 시관의 회전 속도(1500rpm)가 일정인 경우 물의 첨가량(체적비, 0~20%)과 기관의 부하(BMEP,2.1~ 7.5kg/$\textrm{cm}^2$)변화에 따른 연소실내 압력, 압력상승률 및 열발생률, 착화지연 기간, 연료 소비율 등의 연소특성과 CO, HC, NOx 및 매연의 배출능도 등 유해 배출 가스에 미치는 영향에 관하여 실험적으로 구한 것이다.

유동층 연소로에서 유, 무연탄 혼합연소시 탈황에 관한 연구 -천연석회석을 이용한 황산화물 제어- (A study on Desuifurization by Anthracite-Bituminous coal blend combustion in a fluidized bed combustor -A desulfurization using natural limestone-)

  • 조상원;민병철;정종현;전영화;김대영;정덕영
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.102-108
    • /
    • 1997
  • It has been studied that SO$_2$ removal efficiency of anthracite-bituminous coal blend combustion in a fludized bed coal combustor. The objectives of this study were to investigate SO$_2$ removal characteristics of coal blend combustion with Ca/S, anthracite fraction, bed temperature, and limestone size. The experimental results were presented as follows First, the effect of the desulfurization by the dia size of limestone was great and SO$_2$ removal efficiency was highest in limestone dia 631 $\mu$m. Second, as air velocity increased, the desulfurization rate decreased a little. But the difference of the desulfurization rate according to air velocity was not too large. As the height of fluidized bed combustor increased regardless of air velocity, SO$_2$ concentration tends to increase largely. Third, as Ca/S mole ratio incresed, SO$_2$ desulfurization rate incresed rapidly up to Ca/S mole ratio 3 while the desulfurization rates did not increse too largely in the range of more than the level. Forth, the bed temperature had a great effect on the desulfurization rate and the desulfurization rate tended to increase slightly as anthracite fraction increased.

  • PDF

RATO(Rocket-Assisted Take Off) 시스템 적용을 위한 하이브리드 로켓 비단공형 연료 그레인 기초 연소특성 연구 (A Study on Combustion Characteristics of Non-Circular Grain in Hybrid Rocket for RATO (Rocket-Assisted Take Off) System)

  • 김수진;고수한;김설희;김경모;이성근;한예찬;문희장
    • 한국항공운항학회지
    • /
    • 제30권4호
    • /
    • pp.184-190
    • /
    • 2022
  • In an attempt to apply hybrid rocket to the RATO (Rocket-Assisted Take Off) system, combustion characteristics of the non-circular grain were figured out in this study. Having larger combustion area, it was reconfirmed that the non-circular grain has advantages over regression rate, characteristic velocity and chamber pressure in which all gave higher values. Experiments were performed to understand the effect of the non-circular grain geometry over time where local regression rates depending on grain location were analyzed. It was found that the regression rate of five distinct locations were different. Partial conclusion driven was that these differences are due to the heat transfer caused by dissimilar distances from the flame layer. Besides, as combustion duration increased, the fuel port became circular, and the regression rate converged to a single value over the whole grain.

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.