• 제목/요약/키워드: combined loads

검색결과 486건 처리시간 0.024초

장기유출 모의를 통한 비점오염 부하 산정 (Estimation of NPS Pollutant Loads using Long-term Outflow Simulation)

  • 이정호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2010년도 춘계 종합학술대회 논문집
    • /
    • pp.644-646
    • /
    • 2010
  • 최근 비점오염원 제어를 위해 오염총량제(Total Maximum Daily Loads, TMDL)가 도입되었으며, 이것은 도시유역에서의 대표적 비점오염원인 합류식 하수관거 월류수(Combined Sewer Overflows, CSOs)의 발생에 대한 분석이 선행되어야 한다. CSOs를 산정하기 위한 방법으로는 두 가지가 있다. 첫째, 확률강우량 분석에 의한 유출량 모의 방법으로, 이것은 표준강우사상에 의한 연간 CSOs 산정에 국한되는 한계를 가지고 있다. 둘째, 관측 강우 자료를 이용한 장기유출모의(LOS) 방법으로, 이 방법은 장기간의 강우 자료를 이용할 경우 최근의 강우 변화 양상을 반영하기 어려우며, 반면 단기간의 강우 자료를 이용할 경우 결과에 대한 신뢰도를 보장할 수 없다. 본 연구에서는 연간 CSOs 발생량 및 오염부하량을 산정하기 위하여 강우발생모형과 Long-term Outflow Simulation 모형을 이용하였다. 본 연구를 통한 CSOs의 산정은 앞서 언급된 기존 방법들의 문제점을 해결하고자 개발되었으며, 향후 도시화에 따른 유출 변화 및 유역 물순환 변화에 대한 연구에 활용될 수 있다.

  • PDF

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구 (Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

병원 건물의 에너지 부하모델 개발 (Development of Energy Demand Models for Hospitals)

  • 박화춘;정모
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.636-642
    • /
    • 2009
  • Energy consumption data are surveyed and measured to develop energy demand models for hospital buildings as part of a complete package. Daily consumption profiles for electricity, heating, cooling and hot water are surveyed for 14 carefully chosen hospitals to establish energy demand patterns for a time span of a year. Then the hourly demand patterns of the 4 loads are field-measured for different seasons and statistically analyzed to provide higher resolution models. Used in conjunction with energy demand models for other types of buildings, the high resolution of 8760 hour energy demand models for a hospital for a typical year will serve as building blocks for the comprehensive model that allows the estimation of the combined loads for arbitrary mixtures of buildings.

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF

강선으로 보강된 연동형 비닐하우스 골조의 구조거동 (Behavior of Multiple Vinyl House Frames Reinforced by Steel Wire)

  • 정동조;김진;서윤수
    • 한국농촌건축학회논문집
    • /
    • 제18권3호
    • /
    • pp.35-42
    • /
    • 2016
  • For the reason of economy, farmers and structural engineers prefer the vinyl house frame members that have the lightest cross sections. Therefore, in order to reach this aim, rod bracing system is the best method for multiple vinyl house frames. In this study, wire rods (tension members) are used to be bracing members in multiple vinyl house frames. The effects of additional wire rods in the frames are investigated by the variations of the bending moments, axial forces, displacements and combined stresses in the main frames that are reinforced by different shapes of rod bracing system. Vinyl house frames are usually made by steel pipe members and collapsed by the excessive wind and snow loads. Two kinds of bracing models are used for wind and snow loads separately in this study. The effective bracing models for each load are finally figured out.

Experimental evaluation on the seismic performance of high strength thin-walled composite members accounting for sectional aspect ratio effect

  • Hsu, H.L.;Juang, J.L.;Luo, K.T.
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.367-380
    • /
    • 2009
  • This study focuses on the experimental evaluation of the flexural-torsional performance of high strength thin-walled composite members. A series of tests on composite members with various sectional aspect ratios subjected to eccentric cyclic loads were conducted. Test results show that the composite member's torsional strength could be approximated using a series of linear segments and evaluated using the superposition of the component steel and reinforced concrete responses. It is also validated from the tests that the strength deterioration of members subjected to combined loads is closely related to the aspect ratios of the sections. An interaction expression between the bending and torsion for high strength thin-walled composite members is proposed for engineering practice references.

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

Analysis of circular tank foundation on multi-layered soil subject to combined vertical and lateral loads

  • Hesham F. Elhuni;Bipin K. Gupta;Dipanjan Basu
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.553-566
    • /
    • 2023
  • A circular tank foundation resting on the ground and subjected to axisymmetric horizontal and vertical loads and moments is analyzed using the variational principles of mechanics. The circular foundation is assumed to behave as a Kirchhoff plate with in-plane and transverse displacements. The soil beneath the foundation is assumed to be a multi-layered continuum in which the horizontal and vertical displacements are expressed as products of separable functions. The differential equations of plate and soil displacements are obtained by minimizing the total potential energy of the plate-soil system and are solved using the finite element and finite difference methods following an iterative algorithm. Comparisons with the results of equivalent two-dimensional finite element analysis and other researchers establish the accuracy of the method.