• Title/Summary/Keyword: combined error motion

Search Result 46, Processing Time 0.024 seconds

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

Intelligent Control of Robot Manipulators by Learning (학습을 이용한 로봇 머니퓰레이터용 지능제어)

  • Lee DongHun;Kuc TaeYong;Chung ChaeWook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • An intelligent control method is proposed for control of rigid robot manipulators which achieves exponential tracking of repetitive robot trajectory under uncertain operating conditions such as parameter uncertainty and unknown deterministic disturbance. In the learning controller, exponentially stable learning algorithms are combined with stabilizing computed error feedforward and feedback inputs. It is shown that all the error signals in the learning system are bounded and the repetitive robot motion converges to the desired one exponentially fast with guaranteed convergence rate. An engineering workstation based control system is built to verify the effectiveness of the proposed control scheme.

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF

Performance Comparison of Block-based Distortion Estimations for FRUC Techniques (FRUC 기술을 위한 블록별 왜곡 크기 추정기법의 성능비교)

  • Kim, Jin-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.927-929
    • /
    • 2011
  • Since DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based cost evaluation models are tested and can be effectively used for estimating the MSE noise.

  • PDF

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

Accelerated compression of sub-images by use of effective motion estimation and difference image methods in integral imaging (집적영상에서 효율적인 물체움직임 추정 및 차 영상 기법을 이용한 서브영상의 고속 압축)

  • Lee, Hyoung-Woo;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2762-2770
    • /
    • 2012
  • In this paper, we propose a novel approach to effectively compress the sub-images transformed from the picked-up elemental images in integral imaging, in which motion vectors of the object in each sub-image are fast and accurately estimated and compensated by combined use of MSE(mean square error)-based TSS(tree-step search) and FS(full search) schemes. This is, the possible object areas in each sub-image are searched by using the fast TSS algorithm in advance, then the these selected object areas are fully searched with the accurate FS algorithm. Furthermore, the sub-images in which all object's motion vectors are compensated, are transformed into the residual images by using the difference image method and finally compressed with the MPEG-4 algorithm. Experimental results reveal that the proposed method shows 214% improvement in the compression time per each image frame compared to that of the conventional method while keeping the same compression ratio with the conventional method. These successful results confirm the feasibility of the proposed method in the practical application.

Gain Optimization of Kinematic Control for Wire-driven Surgical Robot with Layered Joint Structure Considering Actuation Velocity Bound (와이어로 구동하는 적층형 다관절 구조를 지닌 수술 로봇의 구동 속도를 고려한 기구학적 제어기의 게인 최적화)

  • Jin, Sangrok;Han, Seokyoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.212-220
    • /
    • 2020
  • This paper deals with a strategy of gain optimization for the kinematic control algorithm of a wire-driven surgical robot. The proposed controller consists of the closed-loop inverse kinematics with the back-calculation method. The closed-loop inverse kinematics has 18 PID control gains, and the back-calculation method has 6 gains. An efficient strategy is designed to optimize 18 values first and then the remaining 6 values. The optimal gain sets are searched under the step input with performance indices. In this gain optimization, the objective function is defined as the minimum value of signal-to-noise ratio of the performance indices for 6 DoF (Degree-of-Freedom) motion that is based on the Taguchi method, and the constraints are applied to obtain stable responses for each motion evenly. The gain sets obtained are verified by simulations using the test trajectories. In comparative results, the optimal gain value based on the performance index combined with ISE (integral of square error) and settling time showed the best control performance.

Control system design for a manipulator under parameter perturbation

  • Shimomoto, Y.;Kisu, H.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.346-349
    • /
    • 1994
  • This paper is concerned with a motion control of a manipulator under parametric uncertainties and external disturbances. The parametric uncertainties are regarded as internally generated disturbances in the manipulator. Based on this idea, we formulate a model reference control problem with desired disturbance attenuation. The solution of this control problem not only reduces the worst-case effect on tracking error due to internal and external disturbances (combined disturbances) as much as possible, but also achieve optimal tracking when perturbations are absent. In order to solve the control problem which is formulated in this paper we reduce it to a constrained minmax cost control problem. A differential game theory is used to treat this constrained minmax cost control problem. The differential game theory leads to a sufficient condition for the global solvability of the model reference control problem with desired disturbance attenuation.

  • PDF

Measurements of Temperature and Flow Fields with Sub-Millimeter Spatial Resolution Using Two-Color Laser Induced Fluorescence (LIF) and Micro-Particle Image Velocimetry (PIV)

  • Kim Hyun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.716-727
    • /
    • 2005
  • Comprehensive measurements for velocity and temperature fields have been conducted. A Micro PIV 2-color LIF system have been setup to measure the buoyancy driven fields in a 1-mm heated channel with low Grashof-Prandtl numbers [$86]. Fluorescence microscopy is combined with an MPIV system to obtain enough intensity images and clear pictures from nano-scale fluorescence particles. The spatial resolution of the Micro PIV system is $75{\mu}m\;by\;67{\mu}m$ and error due to Brownian motion is estimated $1.05\%$. Temperature measurements have achieved the $4.7\;{\mu}m$ spatial resolution with relatively large data uncertainties the present experiment. The measurement uncertainties have been decreased down to less than ${\pm}1.0^{\circ}C$ when measurement resolution is equivalent to $76\;{\mu}m$. Measured velocity and temperature fields will be compared with numerical results to examine the feasibility of development as a diagnostic technique.

Cartesian Space Nonlinear PD Control for the Multi-tink Flexible Manipulators

  • Cheong, Joono;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.21-24
    • /
    • 1999
  • There-have been many control strategies for the enact joint position tracking of flexible manipulators, but direct cartesian space tracking control methods an not developed well. In this paper, we propose a PD control method based on the cartesian error in the end point trajectory tracking. the proposed controller is composed of PD control combined with nonlinear saturation term hut has a very simple form. the effect of this term is continuous suppression of vibration which is induced by the coupling of rigid motion. This control works both on the regulation and on the tracking cases. The performance and validity of this control method is shown by simulation examples.

  • PDF