• Title/Summary/Keyword: combinatorial optimization problem

Search Result 201, Processing Time 0.023 seconds

Continuous Variable을 갖는 Mean Field Annealing과 그 응용

  • 이경희;조광수;이원돈
    • ETRI Journal
    • /
    • 제14권3호
    • /
    • pp.67-74
    • /
    • 1992
  • Discrete variable을 갖는 Mean Field Theory(MFT) neural network은 이미 많은 combinatorial optimization 문제에 적용되어져 왔다. 본 논문에서는 이를 확장하여 continuous variable을 갖는 mean field annealing을 제안하고, 이러한 network에서 integral로 표현되는 spin average를 mean field에 기초하여 어렵지 않게 구할 수 있는 one-variable stochastic simulated annealing을 제안하였다. 이런 방법으로 multi-body problem을 single-body problem으로 바꿀 수 있었다. 또한 이 방법을 이용한 응용으로서 통계학에서 잘 알려진 문제중의 하나인 quantification analysis 문제에 적용하여 타당성을 보였다.

  • PDF

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구 (A Study of Ant Colony System Design for Multicast Routing)

  • 이성근;한치근
    • 정보처리학회논문지A
    • /
    • 제10A권4호
    • /
    • pp.369-374
    • /
    • 2003
  • 조합 최적화 문제를 풀기 위한 개미 알고리즘(Ant Algorithm)은 실제 개미 집단의 행동을 모방하여 만들어진 것이다. Ant Colony System(ACS)은 여러 유형의 개미 알고리즘 중 비교적 최근에 소개된 것이다. ACS의 설계를 위해 순회 외판원 문제(Traveling Salesman Problem, TSP)를 사용하여 실험을 수행하였다. ACS를 다양한 조합 최적화 문제에 적용할 때 순회 외판원 문제에 사용된 ACS의 파라미터와 전략을 사용하고 있다. 본 논문에서는 조합 최적화 문제들 중 하나인 멀티캐스팅 라우팅 문제를 해결하기 위해 ACS를 이용하였다. 멀티캐스트 라우팅은 데이터를 하나의 송신자에서 여러 수신자들로 보내기 때문에 모든 노드를 포함하는 순회 외판원 문제와는 속성이 다르고, 송신자에서 각 수신자에 하나의 최단경로를 설정하는 문제와도 다른 속성을 지니고 있다. 본 논문에서는 멀티캐스트 라우팅에 ACS를 적용하기 위해 알고리즘의 동작을 수정하고, 수정한 ACS의 성능을 향상시키기 위한 최적의 전략과 파라미터를 설계한다.

왕복비대칭 차량이동속도 하에서의 복수차량 배송경로 최적화 (Optimization of Delivery Route for Multi-Vehicle under Time Various and Unsymmetrical Forward and Backward Vehicle Moving Speed)

  • 박성미;문기주
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.138-145
    • /
    • 2013
  • A sweep-based heuristic using common area is developed for multi-vehicle VRPs under time various and unsymmetric forward and backward vehicle moving speed. One depot and 2 delivery vehicle are assumed in this research to make the problem solving strategy simple. A common area is held to make adjustment of possible unbalance of between two vehicle delivery completion times. The 4 time zone heuristic is used to solve for efficient delivery route for each vehicle. The current size of common area needs to be studied for better results, but the suggested problem solving procedures can be expanded for any number of vehicles.

Inverse Bin-packing Number Problems: NP-Hardness and Approximation Algorithms

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • 제18권2호
    • /
    • pp.19-22
    • /
    • 2012
  • In the bin-packing problem, we deal with how to pack the items by using a minimum number of bins. In the inverse bin-packing number problem, IBPN for short, we are given a list of items and a fixed number of bins. The objective is to perturb at the minimum cost the item-size vector so that all items can be packed into the prescribed number of bins. We show that IBPN is NP-hard and provide an approximation algorithm. We also consider a variant of IBPN where the prescribed solution value should be returned by a pre-selected specific approximation algorithm.

무선 애드 혹 네트워크에서 노드 클러스터링을 위한 유전 알고리즘 (A Genetic Algorithm for Clustering Nodes in Wireless Ad-hoc Networks)

  • 장길웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.649-651
    • /
    • 2017
  • 클러스터링 문제는 무선 애드 혹 네트워크의 네트워크 수명과 확장성을 향상시키는 문제 중 하나이다. 이 문제는 무선 애드 혹 네트워크의 설계 및 운영과 관련된 어려운 조합 최적화 문제이다. 본 논문에서는 네트워크 수명을 최대화하고 무선 애드 혹 네트워크의 확장성을 고려한 효율적인 클러스터링 알고리즘을 제안한다. 클러스터링 문제는 NP-hard 문제로 알려져 있습니다. 따라서 본 논문에서는 노드의 수가 많은 네트워크에서 합리적인 시간 내에 최적의 해를 효율적으로 얻을 수 있는 최적화 방식을 사용하여 문제를 해결한다. 제안된 알고리즘은 노드의 전력과 클러스터링 비용을 고려하여 클러스터 헤드를 선택하고 클러스터를 구성한다. 우리는 노드의 전송에너지 측면에서 시뮬레이션을 통해 성능을 평가한다. 시뮬레이션 결과는 제안된 알고리즘이 기존의 알고리즘보다 성능이 우수함을 보여 준다.

  • PDF

파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계 (Optimal Design of Location Management Using Particle Swarm Optimization)

  • 변지환;김성수;장시환;김연수
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교 (Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.