• Title/Summary/Keyword: com(center of mass)

Search Result 68, Processing Time 0.021 seconds

Effect on the Limit of Stability of the Lowered Center of Mass With a Weight Belt

  • Phan, Jimmy;Wakumoto, Kaylen;Chen, Jeffrey;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2020
  • Background: The consequences of falls are often debilitating, and prevention is important. In theory, the lower the center of mass (COM), the greater postural stability during standing, and a weight belt at the waist level may help to lower the COM and improve the standing balance. Objects: We examined how the limit of stability (LOS) was affected by the lowered center of mass with the weight belt. Methods: Twenty healthy individuals participated in the LOS test. After calculating each participant's COM, a weight belt was fastened ten centimeters below the COM. Trials were acquired with five weight belt conditions: 0%, 2%, 4%, 6%, and 8% of body weight. Outcome measures included reaction time, movement velocity, endpoint excursion, maximum excursion, and directional control in 4 cardinal moving directions. Results: None of our outcome variables were associated with a weight belt (p > 0.075), but all of them were associated with moving direction (p < 0.01). On average, movement velocity of the COM and maximum excursion were 31% and 18% greater, respectively, in mediolateral than anteroposterior direction (5.4°/s vs. 4.1°/s; 97.5% vs. 82.6%). Conclusion: Our results suggest that postural stability was not affected by the weight-induced lowered COM, informing the development and improvement of balance training strategies.

Effect on the Center of Pressure of Vision, Floor Condition, and the Height of Center of Mass During Quiet Standing

  • Kim, Seung-su;Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.154-160
    • /
    • 2021
  • Background: Theoretically, balance is affected by the height of center of mass (COM) during quiet standing. However, no one examined this in humans with variables derived from the center of pressure (COP). Objects: We have conducted balance experiment to measure COP data during quiet standing, in order to examine how the COP measures were affected by the height of COM, vision, floor conditions, and gender. Methods: Twenty individuals stood still with feet together and arms at sides for 30 seconds on a force plate. Trials were acquired with three COM heights: 1% increased or decreased, and not changed, with two vision conditions: eyes closed (EC) and eyes open (EO), and with two floor conditions: unstable (foam pad) and stable (force plate) floor. Outcome variables included the mean distance, root mean square distance, total excursion, mean velocity, and 95% confidence circle area. Results: All outcome variables were associated with the COM height (p < 0.0005), vision (p < 0.0005), and floor condition (p < 0.003). The mean velocity and 95% confidence circle area were 5.7% and 21.8% greater, respectively, in raised COM than in lowered COM (24.6 versus 23.2 mm/s; 1,013.4 versus 832.3 mm2). However, there were no interactions between the COM height and vision condition (p > 0.096), and between the COM height and floor condition (p > 0.183) for all outcome variables. Furthermore, there was no gender difference in all outcome variables (p > 0.186). Conclusion: Balance was affected by the change of COM height induced by a weight belt in human. However, the effect was not affected by vision or floor condition. Our results should inform the design of balance exercise program to improve the outcome of the balance training.

Effects of ankle foot orthoses on Center of Mass of children with spastic cerebral palsy during gait (경첩 발목 보조기 착용이 경직성 뇌성마비 아동의 신체 질량 중심점에 보행에 미치는 영향)

  • Jang, Hye-Eun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.349-350
    • /
    • 2012
  • 본 연구에서는 경첩 발목 보조기(Hinged Ankle Foot Orthoses, HAFO)의 착용이 경직성 뇌성마비 아동의 보행 시 신체 질량 중심점(Center of Mass, COM)에 미치는 영향을 알아보고자 한다. 실험은 보조 기구의 사용 없이 독립적인 보행이 가능한 경직성 뇌성마비 아동(하지마비 아동 8명, 편마비 아동 5명) 13명이 참여하였다. 34개의 적외선 반사 마커를 신체에 직접 부착한 뒤, 6대의 동작분석 카메라로 맨발 보행과 HAFO착용 보행을 각 5회 촬영하였다. 전-후방, 내-외측, 수직 방향으로의 COM의 이동과 COM 속도를 계산하여 HAFO착용 전 후를 대응표본 T검정으로 분석하였다. HAFO 착용은 양하지 마비 아동 그룹은 COM의 전방 이동이 유의하게 증가하였고(p<0.01), COM 속도는 내-외측과 수직 방향에서 유의하게 증가하였다(p<0.01). 반면 편마비 아동 그룹은 COM 이동과 속도가 모든 방향에서 유의하게 증가하였다(p<0.01). 따라서 HAFO는 뇌성마비 아동의 보행 기능을 개선시킨다고 할 수 있다.

  • PDF

Age Effects on Center of Mass during Obstacle Crossing (장애물 보행 시 노화에 따른 신체질량중심의 변화)

  • Son, Nam-Kuk;Kim, Hyeong-Dong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2014
  • PURPOSE: The purpose of this study was to compare three dimensional displacement and peak velocity of the center of mass (COM) during obstacle crossing in young and older adults. METHODS: 10 young adults (6 males/4 females, $24.6{\pm}1.9$ years, age range: 22.0-26.9) and 10 older adults (1 male/9 females, $76.9{\pm}5.1$ years, age range: 65.2-81.2) participated in the study. Both groups crossed an obstacle, which is 10% of leg length, and COM was measured using motion analysis system. Independent t-test was used to find significant differences between two groups. RESULTS: The older adults showed significantly greater and faster COM displacement and peak velocity in mediolateral (M-L) direction as compared with young adults (p<.01 and p<.001 respectively). However, the young adults showed significantly greater and faster COM displacement and peak velocity in anteroposterior (A-P) direction as compared with older adults (p<.05 and p<.001 respectively). Furthermore, the young adults showed faster peak velocity of COM in vertical direction as compared with older adults (p<.001). However, no significant difference was found in the COM displacement in vertical direction between two groups. CONCLUSION: Greater and faster COM displacement and peak velocity in M-L direction in older adults were due to compensatory adjustment for appropriate contact on base of support of swing limb. Thus, the motion of the COM in M-L direction may be a crucial factor to identify risk of falls in older adults.

Motion generation using Center of Mass (무게중심을 활용한 모션 생성 기술)

  • Park, Geuntae;Sohn, Chae Jun;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2020
  • When a character's pose changes, its center of mass(COM) also changes. The change of COM has distinctive patterns corresponding to various motion types like walking, running or sitting. Thus the motion type can be predicted by using COM movement. We propose a motion generator that uses character's center of mass information. This generator can generate various motions without annotated action type labels. Thus dataset for training and running can be generated full-automatically. Our neural network model takes the motion history of the character and its center of mass information as inputs and generates a full-body pose for the current frame, and is trained using simple Convolutional Neural Network(CNN) that performs 1D convolution to deal with time-series motion data.

Evaluation of Gait Stability using Medio-Lateral Inclination Angle in Male Adults (좌·우 기울기각도를 이용한 남자 성인의 보행안정성 평가)

  • Chang, Jae-Kwan;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.261-266
    • /
    • 2010
  • Human body is hard to be in perfect balance during walking. Most of time the trunk is supported by one leg and the center of mass(COM) falls to the contralateral side. Thus, dynamic variables such as the velocity of the COM should be considered when gait stability is evaluated. The purpose of this study was to investigate whether the extrapolated center of mass(XCom) which utilized the COM position and its velocity, is appropriate to evaluate gait stability. Ten healthy adults participated in this study and performed 3 different types of gaits(normal(NG), hands on waists(HWG), and hands on shoulders(HSG)) onto 4 different types of obstacle(obstacle height: 0%, 30%, 40% and 50% of leg length). Medio-lateral Com-CoP and XCom-CoP inclination angle were calculated during support phase. For all condition, greater M-L XCoM-CoP inclination angles were found(p<.05) compared with those of matched obstacle height CoM-CoP. Especially, M-L XCoM-CoP inclination angle at 50% height revealed the best condition for monitoring dynamic stability. Significantly increased in M-L XCoM-CoP inclination angle was found(p<.05) as obstacle height increased on NG and HWG.

Kinematic Characteristics of the Thrower's COM and the Shot in Shot Put : The Woman Record Holder of Korea (포환던지기 동작 시 포환과 신체 무게중심의 운동학적 특성 : 한국 여자 기록보유자를 대상으로)

  • Lee, Dong-Jin;Cho, Byung-Jun;Lee, Myung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5148-5154
    • /
    • 2012
  • The purpose of this study was to analyze the kinematic characteristics of the thrower's center of mass (COM) and the shot that her performance hits record high for the 29th National Athletic Competition. Two S-VHS video cameras were used to visualize. The Direct Linear Transformation technique was employed to paint a clear picture in the three dimensional coordination. Kwon3D was used to analyze the data. The results showed that release velocity and height were 13.73 m/s and 198.6 cm(119% by height ratio), respectively, which is considered as peak performance comparing an extensive review of previous literature on the shot put. Release angle was $34^{\circ}$, which is lower than the previous studies. The path of thrower's center of mass is needed to travel in a release direction during the flight phase. The vertical movement of the thrower's center of mass during the driving should be controlled. At release, the perfact timing is required without vertical and horizontal movements of the thrower's center of mass.

Walking Measures with a Tri-axial Accelerometer in Stroke Patients (가속도계를 이용한 뇌졸중 환자의 보행 측정)

  • Oh, Yong-Seop;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 2013
  • Purpose : The purpose of this study was to measure the center of mass in body with stroke patients using a tri-axial accelerometer during walking. Methods : Twenty-eight patients were recruited and divided into two groups for this study. To measure their walking ability, Timed Up & Go (TUG) test and Fucntioanl Gait Assessment (FGA) were conducted and acceleration at rotation of center of mass (COM) in body were measure for each group. Results : In the comparisons between the two groups, the TUG and FGA were not significant differences and acceleration at rotation of COM was not significant differences also. Conclusion : Our research results suggesting that the accelerometer may be used as a testing tool and ongoing assessment tool for stroke patients during effects of intervention in walking.

Analysis of Walking Using Smartphone Application (스마트폰 어플리케이션을 이용한 보행 평가)

  • Jung, Sangcheol;Lee, Inyoung;Yoon, Soobin;Kim, Suyeon;Woo, Youngkeun
    • PNF and Movement
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • Purpose: The accelerometer is a tool for evaluating walking by the displacement of the center of mass (COM) in the body. Recently, smartphones have added an accelerometer app, and it can be used to evaluate outcomemanures in rehabilitation. The purpose of this study was to investigate the COM in the bodies of normal persons and stroke patients using this smartphone application while walking. Methods: Twenty normal persons and twenty-two stroke patients were recruited and had their COM measured using G-walk and the smartphone application, SMAP, during 10 m walking. Subjects repeated the 10 m of walking 3 times, and we used the SMAP, Accelerometer Monitor ver. 1.5.0, to evaluate COM during the walk. To measure the displacement of COM, we used the difference in value between the maximal angle and the minimum anterior-posterior (AP), mediolateral (ML), and rotational angles during the walk. Results: For the normal persons, there was significant correlation between the AP and AP of SMAP, and was also a significant correlation between rotational angle and the ML of SMAP. In the stroke patients, there was significant correlation between AP and ML, and the rotational angle of SMAP. Conclusion: Our research results suggest that if the SMAP system is reinforced in the case of patients who have a greater displacement of COM, it may be used as an evaluation tool during walking.

Investigation of Biomechanical Factors in Track and Field Javelin Performance: A Multidimensional Analysis of Predictive Variables through Multiple Regression Analysis (육상 창던지기 기록에 미치는 운동학적 요인의 탐색: 다차원적 다중회귀를 활용한 성과 예측 변수 분석)

  • Ho-Jong Gil;Jin Joo Yang;Jong Chul Park;Young Sun Lee;Jae Myoung Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.175-184
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the effects of human motion and javelin kinematics during the energy transfer in javelin throwing on records, and to provide evidence-based training insights for athletes and coaches to enhance records. Method: Three javelin throw athletes (age: 22.67 ± 0.58 years, height: 178.33 ± 7.37 cm, weight: 83.67 ± 1.15 kg) were recruited for this study. Each athlete attempted ten maximum record trials, and the kinematic data from each performance were analyzed to determine their influence on the records. The Theia3d Markerless system was used for motion analysis. Results: Key factors were modeled and identified at each moment. In E1, main variables were COM Y (𝛽 8.162, p<.05) and COM velocity Z (𝛽 -72.489, p<.05); in E2, COM X (𝛽 -17.604, p<.05); in E3, COM X (𝛽 -18.606, p<.05), COM velocity Y (𝛽 38.694, p<.05), and COM velocity X (𝛽 66.323, p<.05). For the javelin throw dynamics in E3, key determinants were Attitude angle and Javelin velocity in the Y-axis. Conclusion: The study reveals that controlled vertical movement, center of mass management during braking, and enhanced pelvic rotation significantly improve javelin throw performance. These kinematic strategies are critical for record enhancement in javelin throwing.