• Title/Summary/Keyword: column-tree connection

Search Result 11, Processing Time 0.025 seconds

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Modeling Parameters for Column-Tree Type Steel Beam-Column Connections (컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안)

  • An, Heetae;Kim, Taewan;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Cyclic Seismic Testing of Full-Scale Column-Tree Type Steel Moment Connections (반복재하 실물대 실험에 의한 컬럼-트리(Column-Tree) 형식 철골 모멘트 접합부의 내진거동 연구)

  • Lee, Cheol Ho;Park, Jong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.629-639
    • /
    • 1998
  • This paper summarizes the results of full-scale cyclic seismic performance tests on three column-tree type steel moment connections. Each test specimen consisted of a $H-600{\times}200$ beam and a $H-400{\times}400$ column of SS41 (SS400). Key parameter included was column PZ (panel zone) strength relative to beam strength. The seismic performance of specimen with stronger PZ tended to be inferior. Total plastic rotations available in the specimens ranged from 1.8 to 3.0 (% rad). The limited test results in this study seem to support the speculation that permitting PZ yielding shall be more beneficial to enhancing total plastic rotation capacity of the moment connection. Beam flange fracture across the heat affected zone and divot-type pullout of the column flange were observed in the tests. A conceptual mechanical model consistent with observed test results was also sought.

  • PDF

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

A Study on the Economy of Weak-Axis Beam-to-Column Connections (약축 보-기둥 접합부의 경제성에 관한 연구)

  • Park, Jong Won;Kang, Seoung Min;Oh, Yong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • Column-tree beam-to-column joints are widely used in moment-resisting frames in Korea. In this study, we proposed four different arrangements for weak-axis moment-resisting beam-to-column connections, which are more economical than the conventional connection, while developing similar structural performance. We investigated the proposed connections whose connection details were different from the conventional one. The experiment was also conducted on a total of five beam-to-column joint specimensto verify the structural performance of the proposed connections. All four connections proposed in this study were found to be more economical that the conventional connection. Three out of four specimens with proposed details were able to developa structural performance similar to that of the specimen with the conventional detail.

Column Generation Approach to the Steiner Tree Packing Problem (열 생성 기법을 이용한 스타이너 나무 분할 문제에 관한 연구)

  • 정규웅;이경식;박성수;박경철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.3
    • /
    • pp.17-33
    • /
    • 2000
  • We consider the Steiner tree packing problem. For a given undirected graph G =(V, E) with positive integer capacities and non-negative weights on its edges, and a list of node sets(nets), the problem is to find a connection of nets which satisfies the edge capacity limits and minimizes the total weights. We focus on the switchbox routing problem in knock-knee model and formulate this problem as an integer programming using Steiner tree variables. The model contains exponential number of variables, but the problem can be solved using a polynomial time column generation procedure. We test the algorithm on some standard test instances and compare the performances with the results using cutting plane approach. Computational results show that our algorithm is competitive to the cutting plane algorithm presented by Grotschel et al. and can be used to solve practically sized problems.

  • PDF

A Comparative Study on Louis L Kahn's Architectural Philosophy and Kabbalah based on Psychoanalysis (정신분석학에 의한 루이스 칸의 건축철학과 카발라와의 비교 연구)

  • Choi, Hyo-Sik
    • Journal of architectural history
    • /
    • v.18 no.2
    • /
    • pp.85-105
    • /
    • 2009
  • This study set out to compare and analyze the influences Kabbalah, which was Louis I. Kahn's faith as a Jew, on his architecture based on Freud's psychoanalysis that had many exchanges with modernism and contemporary architecture and theories. The specific goals of the study were to shed light to Kahn's presence in contemporary architecture anew and establish the methodology of using psychoanalysis in building new theories of architectural planning. When the theories of psychoanalysis were introduced for comparison and analysis purposes, Kahn tried to differentiate his buildings by placing a function or symbolic central space at the heart of a building even though he did adopt a characteristic of modernism architecture, which was placing a core at the centre of plan, for a while. Such a tendency of his was based on Jung's opinions rather than Freud's and affected by Ecole des Beaux-Art. The analysis results also indicate that he conceived "Served Space & Servant Space," "architecture of connection" and "silence and light" that made up the essence of his architectural theory from the relationships between Ayin-Sof, Kabbalah's absolute god, and Sefiroth. It's also very likely that his often use of triangles and circles in his architecture was affected by the Tree of Sefiroth diagram of Kabbalah. His tendency is well reflected in Salk Institute and Philips Exeter Academy Library, where he placed a laboratory or courtyard at the center where a core was supposed to be, created a corridor or courtyard space between those central spaces and the core, and connected them one another with to perceive the being of Ayin-Sof into an architectural space, which is well proven with Mikveh Israel Synagogue where he directly applied the Tree of Sefiroth diagram. The synagogue also contained a hollow column that served as an important concept in his late architecture. The hollow column was also the result of him applying the concept of Sefiroth of the place where Ayin-Sof Was reduced in Kabbalah.

  • PDF