• Title/Summary/Keyword: column shape

Search Result 448, Processing Time 0.025 seconds

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

Evaluation on the Behaviors of Precast Concrete Beam-Column Connections for Apartments (공동주택용 프리캐스트 콘크리트 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.657-666
    • /
    • 2006
  • The precast concrete beam-column connectors to retrofit an apartment building were investigated experimentally. Five precast concrete beam-column connectors were considered to develop a modified model which was adapted to domestic construction conditions from the DDC(dywidag ductile connection) of Germany. Special H-shape steel hardware was used to decrease the width of column and beams for the construction of external frames in apartments. It was found that the DDC had high joint strength and ductility, however failed in inclined shear crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting was compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

Evaluation of the Second Order Analysis of Asymmetric Unbraced Frame by using Load Amplification Factor (하중증폭계수를 적용한 비대칭 비가새 골조 2차 해석 평가)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.87-97
    • /
    • 2010
  • The purpose of this study was to evaluate the validity of the second-order analysis for asymmetric unbraced frame using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factors suggested by KBC 2009 were performed for five story - two bay and five story - four bay asymmetric unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the shape of the frame, the axial load ratio of the column, the methods of analysis and the location of column. The research results show that the asymmetric shape of the frame deteriorates the validity of the factor B2 and the suggested methods. The range of error is increased in case of irregular or inclined column.

Measurement of Target Objects Based on Recognition of Curvature and Plane Surfaces using a Single Slit Beam Projection (슬릿광 투영법을 이용한 곡면과 평면의 식별에 의한 대상물체의 계측)

  • Choi, Yong-Woon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.568-576
    • /
    • 1999
  • Using a laser sheet beam projector combined with a CCD-Camera, an efficient technique to recognize complex surface of curvature and lane has been demonstrated for the purpose of mobile robot navigation. In general, obstacles of indoor environments in the field of SLIT-RAY plane are captured as segments of an elliptical arc and a line in the camera image. The robot has been capable of moving along around the obstacle in front of it, by recognizing the original shape of each segment with the differential coefficient by means of least squares method. In this technique, the imaged pixels of each segment, particularly elliptical arc, have been converted into a corresponding circular arc in the real-world coordinates so as to make more feasible the image processing for the position and radius measurement than conventional way based on direct elliptical are analyses. Advantages over direct elliptical cases include 1) higher measurement accuracy and shorter processing time because the circular arc process can reduce the shape-specifying parameters, 2) no complicated factor such as the tilt of elliptical arc axis in the image plane, which produces the capability to find column position and radiua regardless of the camera location . These are essentially required for a mobile robot application. This technique yields an accuracy less than 2cm for a 28.5cm radius column located in the range of 70-250cm distance from the robot. The accuracy obtained in this study is sufficient enough to navigate a cleaning robot which operates in indoor environments.

  • PDF

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

The influence of different factors on buildings' height in the absence of shear walls in low seismic regions

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles;Cashell, Katherine A.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.83-99
    • /
    • 2020
  • Shear walls are structural members in buildings that are used extensively in reinforced concrete frame buildings, and almost exclusively in the UK, regardless of whether or not they are actually required. In recent years, the UK construction industry, led by the Concrete Centre, has questioned the need for such structural elements in low to mid-rise reinforced concrete frame buildings. In this context, a typical modern, 5-storey residential building is studied, and its existing shear walls are replaced with columns as used elsewhere in the building. The aim is to investigate the impact of several design variables, including concrete grade, column size, column shape and slab thickness, on the building's structural performance, considering two punching shear limits (VEd/VRd,c), lateral drift and accelerations, to evaluate its maximum possible height under wind actions without the inclusion of shear walls. To facilitate this study, a numerical model has been developed using the ETABS software. The results demonstrate that the building examined does not require shear walls in the design and has no lateral displacement or acceleration issues. In fact, with further analysis, it is shown that a similar building could be constructed up to 13 and 16 storeys high for 2 and 2.5 punching shear ratios (VEd/VRd,c), respectively, with adequate serviceability and strength, without the need for shear walls, albeit with thicker columns.