• Title/Summary/Keyword: coloring effect

Search Result 165, Processing Time 0.025 seconds

The Effect of Several Paper Bags on Fruit Skin Coloration of Red Skin European Pear 'Kalle' (봉지종류가 적색과피 서양배 'Kalle'의 과피색 발현에 미치는 영향)

  • Kim, Yoon-Kyeong;Kang, Sam-Seok;Choi, Jang-Jeon;Park, Kyoung-Sub;Won, Kyeong-Ho;Lee, Han-Chan;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This study was conducted to elucidate the relationship between light and coloring and to obtain basic results for promoting redness expression in 'Kalle' (Pyrus communis L.) pear skin. It was investigated in location of anthocyanin layer by microscopic observation and differences in skin color expression of 'Kalle' bagged with paper bag which has different light transmittance rate and inside temperature. However, there was no anthocyanin layer in the brown skin and golden yellow color, anthocyanin layer was distributed in epidermins or hyperdermis of red skin pear and apple. Dark red colored 'Kalle' had more anthocyanin content, $29.8mg{\cdot}100g^{-1}$ FW than light red colored apple 'Hongro'. Light transmittance rate of physical characteristics used paper bags was the highest in white paper bag, 42.2% and it also had more light quantity, $8.9{\mu}mol$ than any other tested paper bags in specific wave length 650-655 nm. The maximum temperature of inner bag was higher about $3^{\circ}C$ in yellow paper bag. The red coloration and anthocyanin contents in no bagged fruits were higher than in any other bagged fruit. However, red color expression among the bagged fruits was higher in white paper bag than in double layered black paper bag and yellow paper bag. Also, chromaticity value seemd to be a good index to explain variation of fruit skin color, because anthocyanin content and chromaticity value were higher. Based on these results, it is desirable to cultivate 'Kalle' without bag for stable redness expression but bagging is essential for decreasing damage by insect in Korea. Further examination to find suitable time of removing paperbag for redness expression and decreasing insect damage. In addition, it is required to develop paperbag whose transmittance rate is high in specific light wavelength or temperature of inner bags is low. Additional key words: anthocyanin, bagging, chromaticity value, light transmittance, Pyrus communis L.

Effects of Shipping Temperature and Precooling Treatment of Everbearing Strawberry Cultivars 'Goha' and 'Flamenco' Grown on Highland through Export Simulation (모의 수출 실험을 통한 고랭지 사계성 딸기 'Goha'와 'Flamenco'의 유통 온도 및 예냉 처리효과)

  • Eum, Hyang Lan;Bae, Sang Jun;Hwang, Dae Keun;Yeoung, Young Rog;Hong, Sae Jin
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.202-209
    • /
    • 2014
  • This study was conducted to investigate the effects of low temperature shipping condition and precooling treatments (forced air and room cooling) on everbearing strawberry through export simulation of 'Goha' and 'Flamenco' cultivars. After harvest, it took two days to prepare export procedure such as precooling, sorting, storage, transportation, quarantine and handling, and then everbearing strawberry was carried out shipping at room ($20-25^{\circ}C$) or low ($8^{\circ}C$) temperature conditions. In the case of shipping at room temperature, weight losses of both cultivars were increased up to 10% after 2 days where 'Goha' being 2% higher than that of ' Flamenco'. In 'Flamenco' cultivar, shipping temperature and precooling treatment were not effective in firmness and soluble solids contents during transporting periods. However, in 'Goha' cultivar, room cooling treatment and low shipping temperature were effective in maintaining firmness until 4 days after shipping. Especially titratable acidity was affected by shipping temperature ($P{\leq}0.001$) and precooling treatments ($P{\leq}0.05$) in 'Goha' cultivar. Also shipping temperature under $8^{\circ}C$ delayed coloring and decay incidence of both strawberry cultivars, and precooling treatments of both forced air and room cooling reduced frequency of decay. The shelf life of everbearing strawberry at low shipping temperature was extended more than 4 days compared with shipping at room temperature. Precooling treatment including forced air or room cooling will be useful for the two cultivars when they are transported at low temperature. In 'Flamenco' cultivar, the effect of forced air and room cooling was similar, whereas in 'Goha' room cooling was more effective.

Immunomodulatory Effects of Fermented Curcuma longa L. Extracts on RAW 264.7 Cells (RAW 264.7 세포에서 발효 울금 추출물의 면역조절 효과)

  • Yoo, Seon A;Kim, Ok Kyung;Nam, Da-Eun;Kim, Yongjae;Baek, Humyoung;Jun, Woojin;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.216-223
    • /
    • 2014
  • Curcuma longa L. (CL) is a well known traditional medicinal plant that is also used in curries and mustards as a coloring and flavoring agent. However, CL is not usually used as a food source due to its bitter taste. We investigated the immunomodulatory effect of CL fermented by Aspergillus oryzae (FCL) on RAW 264.7 cells. FCL was extracted with cold water (CW), hot water (HW), 20% ethanol (20% EtOH) and 80% ethanol (80% EtOH), after which its effects on phagocytic activity, tumor necrosis factor-alpha (TNF-${\alpha}$), nitric oxide (NO) production, natural killer (NK) cell activity and mRNA expression of LP-BM5 eco were investigated. Phagocytic activity was increased in HW and 20% EtOH when compared to the control. The secretion of nitric oxide (NO) from RAW 264.7 cells did not change significantly relative to the control. However, TNF-${\alpha}$ was significantly increased by the addition of FCL extracts. Moreover, FCL 20% ethanol extract showed a four fold increase in NK cell cytotoxity relative to the control group. Finally, we observed suppressed mRNA expression of LP-BM5 eco in FCL extracts, especially in the 20% ethanol extracts group. These results indicate that the FCL extracts can be used as a functional material due to their effective immunomodulating activities.

Evaluation of color matching ability according to the color temperature and the experience of practitioner (색 온도 및 술자의 숙련도에 따른 비색 능력 평가 원저)

  • Kim, Ji-Hyun;Kim, Sun-Jai;Lee, Keun-Woo;Shim, June-Sung;Yoon, Joonho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.299-304
    • /
    • 2012
  • Purpose: The aim of this study is to investigate the effect of different experience level and different light source on shade selection ability comparing prosthodontist group and dental student group under 4,000 K and 5,500 K light. Materials and methods: After color difference of Vitapan 3D-master shade guides was measured, 3 sets of 5 shade tabs were selected with similar value but have different chroma (set a, b, c). Also 3 sets of 5 shade tabs were selected with similar chroma but have different values (set d, e, f). Under 4,000 K and 5,500 K light sources, ten prosthodontists and ten dental students were allowed to match in one set of 5 tabs the same shade tab with the tab which was originally selected in the other set of 5 tabs. Color differences of original tab and matched tab were measured by spectrophotometer and the shade selection ability was evaluated with those data. Evaluation of color difference value was performed in regard to different light conditions and different level of experience, followed by t-test with 95% confidence interval. Results: Color difference values under 4,000 K and 5,500 K light source were $1.62{\pm}2.0$, and $1.33{\pm}1.7$ respectively. In addition, color difference values of prosthodontist group and dental student group were $1.34{\pm}1.7$, and $1.61{\pm}2.0$ respectively. Difference of shade selection ability was not found under either different light sources (P=.398), or different experience level (P=.221). Conclusion: Level of experience did not affect on the shade selection ability when prosthodontists and dental students matched the shades with the same shade tab under the same light source.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF