Objectives: We have treated people who have color vision defects with oriental medicine; here we demonstrate several representative cases to illustrate the effectiveness of our treatment. Material and methods: We recruited study patients who visited one oriental hospital for color vision defects. We show several representative cases to illustrate the effectiveness of our treatment. The study initially consisted of 178 subjects who took part during a 3-year period. Subjects, all of whom consented to this treatment and trial, were classified by those who have a color vision defect and those who don't by the Ishihara test and another by the Hahn color vision test. We tried color vision correction treatment with acupuncture. Acupuncture therapy where the retina and optic nerves were activated was conducted in parallel with vision correction. Assessment of therapy was conducted at 30 times, 60 times, 90 times, or 120 times of therapy. Results: Assessment of therapy was performed by conducting treatment 30 times, 60 times, 90 times, or 120 times. Surprisingly, all subjects could correctly recognize color after the treatment; although there were case by case differences according to the number of therapy treatments each individual received. Conclusions: Color vision defects can be treated. To enable those with color vision defects to enjoy better quality of life and increased opportunity in color vision-dependent job fields, therapy to correct the problem is a viable option.
색각은 광 수용체인 3개 R. G. B cone의 파장흡수와 대립과정의 r-g, y-b 채널에 의해 이루어진다. 전기적 회로에 의한 색각 이상 mechanism은 photo cell, relay switch, transformer로 구성하였다. 추체(cone)의 R 또는 G가 결손 된 경우 y-b chromic valence 함수가 되고, 추체의 B가 결손 된 경우는 r-g chromic valence 함수가 되어 색각 이상 mechanism을 잘 적용된다.
This study was to develop a machine vision system to detect and to discriminate 5 kinds of apple surface defectbruise, decay. fleck, worm hole and scar. To detect the defects from an image of apple, thresholding technique was applied to images on various frames (R, G, B, H, S and I) of the color machine vision and an image of near infrared (NIR). To discriminate the detected region of defect, various features of the 5 kind defect regions were extracted from the 4 kinds of images selected above. The features were size of area, roundness, axes length ratio, mean and valiance of pixel values, standard deviation of real part of amplitude spectrum in frequency domain obtained by Fourier transform of pixel data and mean and standard deviation of power spectrum obtained by the same transform of pixel data. Routines to discriminate the defects from the features of image were developed and tested to prove their validity. The test resulted that I-frame and NIR images were the most desirable. Accuracies of the two images to discriminate the defects were noted as 76% and 77%, respectively.
한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
/
pp.852-862
/
1996
This study was carried out to develop tools to detect defects of apple using machine vision. For the purpose, 6 kinds of frame for color images, R, G, B, h, S, and I frame, and a frame for near infra-red images (NIR frame) were tested first to select one which is useful to segment defect areas from apple images. After then, several methods to classify kind of defect for the segmented defect areas were developed and tested. Five kinds of apple defect -bruise , decay ,fleck worm hole and scar were investigated . The results are as follows: NIR frame was selected as the best one among the 7 kinds of image frame, and R, G and I frames showed favourable result to segment areas of apple defect. Various features of the segmented defect areas were measured to classify the defect areas. Eight kids of feature of the areas-size, roundness, axes length ratio, mean and variance of pixel values, variance of real part of spectrum, mean and variance of power spectrum resulted from spacial ourier transform were observed for the segmented defect areas in the selected 4 frames. then procedures to classify defects using the features were developed for the 4 frames and tested with 75-113 defects on apples. The test resulted that NIR and I frames showed high accuracies to classify the kind of defect as 77% and 76% , respectively.
Detecting defects on FPD (Flat Panel Display) color filter before the full panel is made is important to reduce the manufacturing cost. Among many types of defects, the low contrast blemish such as Suzi Mura is difficult to detect using standard CCD cameras. Even skilled inspectors in the inspection line can hardly identify such defects using bare eyes. To overcome this difficulty, point spectrometer has been used to analyze the spectrum to differentiate such defects from normal color filters. However, scanning ever increasing-size color filters by a point spectrometer takes too long time to be used in real production line. We propose a system using a spectral camera which can be viewed as a line scan camera composed of an array of point spectrometers. Three types of lighting system that exhibit different illumination spectrums are devised together with a calibration method of the proposed spectral camera system. To visualize the defect areas, various processing algorithms to identify and to enhance the small differences in spectrum between defective and normal areas are developed. Experiments shows 85% successful visualization. of real samples using the proposed system.
Defect of apple was depreciated the product value and causes storage disease seriously. To detect the defect of ‘Fuji’apple with machine vision system, the optical characteristics of defect should be investigated. In this research, absorbance spectra of defect were acquired by spectrophotometer in the range of visible and NIR region(400∼1,100nm) and L*a*b* color values were also acquired by colorimeter. NIR machine vision system was constructed with B&W camera, frame grabber, 16 tungsten-halogen lamps, variable focal length lens and NIR bandpass filter which was mounted to lens outward. Average gray values of defect at 15 NIR wavelength were acquired and the significant NIR wavelength was selected by comparing Mahalanobis distance between sound and defective apple. As the result of Mahalanobis distance analysis, the significant wavelength to discriminate the defectives in ‘Fuji’apple were found to be 720nm for scab and 970nm for bruise and cuts and 920nm was also effective regardless of defective types.
현재 식품 포장 및 박스에 인쇄된 유통기한 검사 방법은 일부 제품만 샘플링하여 사람의 눈으로 검사하는 방법이다. 이러한 샘플링 검사는 극히 일부분의 제품만 검사 가능하다는 한계를 지니고 있다. 따라서 카메라를 활용한 정확한 검사가 요구된다. 본 논문에서는 제품 포장에 인쇄된 유통기한 결함 검출방법에 인공지능 기술인 딥 러닝 객체인식 기술 모델을 제안한다. 제안된 방법으로는 딥러닝 객체인식 모델 중에 Faster R-CNN 모델을 이용해 인쇄된 유통기한을 검출을 학습하고 Faster R-CNN 방법을 이용해서 수집된 칼라이미지를 그레이 이미지와 이진화 이미지로 변환한 이미지에 대해 각각 성능을 비교하고 검출 성능을 확인한다. 딥 러닝 기술에 적용한 박스에 인쇄된 유통기한 검출 성능은 기존 비전 검사기의 검출 성능과 비슷한 검출 성능을 보였다.
Grading and sorting an indeterminate form of agricultural products such as sweet potatoes and potatoes are a labor intensive job because its shape and size are various and complicate. It costs a great deal to sort sweet potato in an indeterminate forms. There is a great need for an automatic grader fur the potatoes. Machine vision is the promising solution for this purpose. The optical indices for qualifying weight and appearance quality such as shape, color, defects, etc. were obtained and an on-line sorting system was developed. The results are summarized as follows. Sorting system combined with an on-line inspection device was composed of 5 sections, human inspection, feeding, illumination chamber, image processing & control, and grading & discharging. The algorithms to compute geometrical parameters related to the external guality were developed and implemented for sorting the deformed sweet potatoes. Grading accuracy by image processing was $96.4\%$ and the processing capacity was 10,800 pieces per hour.
Various automation studies have been conducted to detect defective products based on product images. In the case of machine vision-based studies, size and color error are detected through a preprocessing process. A situation may arise in which the main features are removed during the preprocessing process, thereby decreasing the accuracy. In addition, complex systems are required to detect various kinds of defects. In this study, we designed and developed a system to detect errors by analyzing various conditions of defective products. We designed the deep learning algorithm to detect the defective features from the product images during the automation process using a convolution neural network (CNN) and verified the performance by applying the algorithm to the checker-switch failure detection system. It was confirmed that all seven error characteristics were detected accurately, and it is expected that it will show excellent performance when applied to automation systems for error detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.