• Title/Summary/Keyword: color vector

Search Result 341, Processing Time 0.025 seconds

Flow Visualization and Measurement of Velocity and Temperature in Parallel Plates

  • Piao, R.-L;Bae, D.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.277-284
    • /
    • 2004
  • This paper describes the influence of through-flow on the mixed convection in a parallel plates with the upper part is cooled and the lower part heated. When forced convection is imposed on natural convection, it is found that the flow pattern of mixed convection in the parallel plates can be classified into three patterns which were affected by Reynolds number. In such a mixed convection, the flow pattern plays an important role in the heat transfer process. In this study, thermo-sensitive liquid crystal suspension method is employed, then the visualization image acquired through the above method is processed by the color image processing technique and the two-dimensional velocity vector and temperature configuration are measured simultaneously.

A Design of Intelligent Web Image Retrival System using Texture and Color Information (질감과 칼라 정보를 이용한 지능적 웹 이미지 검색 시스템 설계)

  • 홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.61-63
    • /
    • 2001
  • 최근들어, 인터넷상의 E-business나 쇼핑몰사이트와 같은 웹 사이트에서 멀티미디어 정보를 많이 사용하고 있다. 멀티미디어 정보 중에서도 이미지 정보가 가장 많이 사용되고 있으며, 이는 사용자들이 가장 많이 접하는 정보이다. 기존의 이미지 검색 기법은 내용 기반 검색이나 키워드를 이용한 검색 방법을 지원하지만, 사용자의 의도를 적용하지는 못하고 있다. 본 논문에서는 웹에서 사용자가 이미지를 검색하고 접근하는 패턴을 이미지의 칼라와 질감을 특징으로 한 벡터를 기반으로 시스템에 학습 시키고 사용자의 검색 성향을 분석하여 시스템에 적용한다. 이미지 검색의 효율을 높이기 위하여 질감을 기반으로 비트 벡터 인덱스(bit vector index) 기법을 적용하며, 인덱스에 의한 이미지 자동 분류 기법을 제안한다. 또한 이미지 칼라의 정보를 영역별로 추출하여 칼라 부분매칭 검색을 가능하게 한다. 이러한 이미지 검색 시스템을 사용하는 사용자의 정보를 시스템에 학습시키고 학습된 결과를 이용해서 사용자가 검색 하고자 하는 이미지 정보에 편리성을 제공하고 검색의 효율성을 증대시킨다.

  • PDF

Color Image Vector Quantization using Enhanced SOM (개선된 SOM을 이용한 칼라 이미지 벡터 양자화)

  • Nam, Mi-Young;Lee, Jong-Hee;Kim, Beak-Kwang
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.255-258
    • /
    • 2000
  • 정보 산업의 발달에 의해 여러 가지 형태의 정보 전달이 가능하게 되었으며 최근에 칼라 화상의 정보 전달에 있어서 빠른 전송과 압축기법이 필요하게 되었다. 본 논문에서는 칼라 화상을 압축하는데 있어 개선된 SOM 알고리즘을 이용하여 칼라 이미지에 대한 벡터 양자화 기법을 제안한다. 제안된 방법은 기존의 LBG 알고리즘을 이용한 벡터 양자화 기법에 비해 블록화 현상을 줄일 수 있었으며 이미지 전체에 대해 블록의 수만큼 계속해서 반복하지 않고 동적으로 코드북을 생성시킴으로써 실행 시간도 줄일 수 있었다. 또한 웨이블릿을 칼라 화상에 적용시켜 화상의 특징을 더욱더 두드러지게 함으로써 개선된 SOM을 적용시 재생의 효과를 높일 수 있었다.

  • PDF

Face Recognition System Using Gray Color Features (흑백 색상 정보 특징을 이용한 얼굴 인식 시스템)

  • 이현순;오동수;유관우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.583-585
    • /
    • 2002
  • 얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.

  • PDF

Content-Based Image Retrieval using Scale-Space Theory (Scale-Space 이론에 기초한 내용 기반 영상 검색)

  • 오정범;문영식
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.150-150
    • /
    • 1999
  • In this paper, a content-based image retrieval scheme based on scale-space theory is proposed. The existing methods using scale-space theory consider all scales for image retrieval,thereby requiring a lot of computation. To overcome this problem, the proposed algorithm utilizes amodified histogram intersection method to select candidate images from database. The relative scalebetween a query image and a candidate image is calculated by the ratio of histograms. Feature pointsare extracted from the candidates using a corner detection algorithm. The feature vector for eachfeature point is composed of RGB color components and differential invariants. For computing thesimilarity between a query image and a candidate image, the euclidean distance measure is used. Theproposed image retrieval method has been applied to various images and the performance improvementover the existing methods has been verified.

Image Feature Representation Using Code Vectors for Retrieval

  • Nishat, Ahmad;Zhao, Hui;Park, Jong-An;Park, Seung-Jin;Yang, Won-II
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • The paper presents an algorithm which uses code vectors to represent comer geometry information for searching the similar images from a database. The comers have been extracted by finding the intersections of the detected lines found using Hough transform. Taking the comer as the center coordinate, the angles of the intersecting lines are determined and are represented using code vectors. A code book has been used to code each comer geometry information and indexes to the code book are generated. For similarity measurement, the histogram of the code book indexes is used. This result in a significant small size feature matrix compared to the algorithms using color features. Experimental results show that use of code vectors is computationally efficient in similarity measurement and the comers being noise invariant produce good results in noisy environments.

  • PDF

Cut Detection Using Color Histogram and Energy Vector in Wavelet Transform Domain (웨이블릿 변환영역에서 칼라 히스토그램과 에너지 벡터를 이용한 컷 검출)

  • 김수정;정성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.467-469
    • /
    • 2000
  • 본 논문은 웨이블릿 변환영역 하에서 칼라 히스토그램과 에너지 벡터를 이용한 컷검출 방법을 제안한다. 기존의 컷 검출 방법들은 대부분 공간영역과 변환영역 각각에 대한 특징을 이용해 컷을 검출하였다. 그러나 본 논문에서는 웨이블릿 변환영역 하에서도 공간영역 특성을 유지하는 LL밴드 상의 칼라 히스토그램과 LH와 HL밴드의 에너지 값을 변환영역 특성으로 함께 고려하였다. 최근 영상 압축 표준에 웨이블릿을 이용한 압축기법이 사용되고 있으므로, 제안한 방법은 웨이블릿 압축 영상에서 압축을 해제할 필요 없이 검출하는데 사용되어질 수 있다. 제안한 방법의 성능평가를 위하여 광고, 뉴스, 스포츠, 영화 등 5개 분야의 다양한 TV 프로그램에서 약 10,000개의 프레임으로 실험한 결과, Recall에서는 약 90%, Precision에서는 약 94%의 컷 검출 성능을 나타내었다.

  • PDF

Farm disease detection procedure by image processing on Smart Farming

  • Cho, Sokpal;Chung, Heechang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.405-407
    • /
    • 2017
  • The environmental change is affecting the farm products like tomato, and pepper, etc. This affects to lead smart farming yield. What is more, this inconstant conditions cause the farms to be infected by variety diseases. Therefore ICT technology is needed to detect and prevent the crops from being effected by diseases. This article suggests the procedure to help producer for identifying farms disease based on the detected image. This detects the kind of diseases with comparing the trained image data before and after disease emergence. First step monitors an image of farms and resize it. Its features are extracted on parameters such as color, and morphology, etc. The next steps are used for classification to classify the image as infected or non-infected. on the bassis of detection algorithm.

  • PDF

The Development of Automatic Map-Publishing Technique for Military Map Production (군 래스터지도 제작을 위한 자동 복원도시기법 개발)

  • Song, Hyun-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2010
  • A program which can produce military standard raster maps was developed. This includes the functions that classify the types of geospatial data, publish automatically based on paper map schema, and convert products with military standard raster formats. Especially, this paper presents the automatic map-publishing technique with mathematical modeling and controling the line width, color, shape that ever not used.

Robust appearance feature learning using pixel-wise discrimination for visual tracking

  • Kim, Minji;Kim, Sungchan
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Considering the high dimensions of video sequences, it is often challenging to acquire a sufficient dataset to train the tracking models. From this perspective, we propose to revisit the idea of hand-crafted feature learning to avoid such a requirement from a dataset. The proposed tracking approach is composed of two phases, detection and tracking, according to how severely the appearance of a target changes. The detection phase addresses severe and rapid variations by learning a new appearance model that classifies the pixels into foreground (or target) and background. We further combine the raw pixel features of the color intensity and spatial location with convolutional feature activations for robust target representation. The tracking phase tracks a target by searching for frame regions where the best pixel-level agreement to the model learned from the detection phase is achieved. Our two-phase approach results in efficient and accurate tracking, outperforming recent methods in various challenging cases of target appearance changes.