• 제목/요약/키워드: color of gas

검색결과 434건 처리시간 0.023초

Analysis of Quality and Color Properties according to the Gas Composition (Modified Atmosphere Packaging) of Pork Sous-Vide Ham Preserved in Natural Brine

  • Sol-Hee Lee;Hack-Youn Kim
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.580-593
    • /
    • 2023
  • The purpose of this study was to analyze whether seawater has positive effects on appearance characteristics, such as CIE a*, and to determine the gas composition concentration that is suitable for maintaining it. Pork hind meat was cured with four types of curing agent for 5 d at 4℃. The different curing agents comprised the control salt, control nitrite pickling salt (CN), treatment brine, and treatment bittern (BT). The cured hams were cooked at 65℃ for 4 h and packaged at O2:N2 gas ratios of 7:3, 8:2, and 9:1 for 3 wk. The physicochemical properties were assessed immediately after heating the sample, and the color properties were measured after a 3 wk storage period. Based on the correlation results of the physicochemical properties, BT had a higher curing and cooking yield than the other treatments, owing to its high salinity. Results of color properties for BT (7:3) and CN (8:2) showed similar color CIE L*, CIE a* chroma, and hue angle values. Therefore, BT can be said to be a sous-vide curing agent suitable for preserving the color of ham, and a high nitrogen concentration of 30% helps to maintain the appearance of seawater sous-vide ham.

고내구성 고감도 강산감지기능 초소수성 색소의 특성 및 응용 (Characteristics and Application of the Highly-Durable and Highly-Sensitive Super Hydrophobic Acid-gas Sensing Dye)

  • 김태경;이선애
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.105-112
    • /
    • 2015
  • In order to detect gas phase strong acid on fabrics, a hexyl-substituted monoazo yellow dye, which was the modified form of a conventional pH-indicating dye, Methyl Yellow, was studied in view of acid-gas sensing properties and its fastness. The dye was printed on polypropylene non-wovens for protective coveralls and examined under various conditions of strong acid such as hydrochloric acid. The dye showed color change from yellow to red on exposure to gas phase hydrochloric acid as low concentration as 1~3 ppm very instantly. Considering reuse of the dye-printed non-wovens, the repeatability of color change was tested on the same sample for 50 repeats and 100 days. The acid-gas sensing function was maintained almost the same level of initial performance. The color fastness of the dye on polypropylene non-wovens was very good showing higher than ratings 4 except for 3~4 to rubbing under wet condition.

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈;동상근
    • 한국연소학회지
    • /
    • 제6권1호
    • /
    • pp.20-28
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in a regenerative low NOx burner. The object of this study is to analyze self flue gas recirculating flow by varying the jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of fuel using the acetone PLIF technique. It is found that self flue gas recirculating flow is entrained into that line using the two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas lowering the flame temperature.

  • PDF

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF

비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼 (Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array)

  • 이준영;오승윤;김동민;김영웅;허정석;이대식
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

교류형 플라즈마 디스플레이 패널의 방전 조건변화에 따른 형광막의 발광특성 (Luminescence Properties of Phosphor Layer with Discharge Conditions in AC PDP)

  • 장상훈;태흥식;최경철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권10호
    • /
    • pp.704-709
    • /
    • 1999
  • The optical properties such as luminance and color coordinates for phosphor layer were studied with applied voltage and gas pressure, Xe mixing ratio, frequency using He and Xe mixing gas in chamber like AC PDP. The luminance of red phosphor layer at constant pressure(300Toor) is increased with increasing voltage, but color purity is not varied. The luminance of red phosphor layer at constant voltage(280V)is decreased with increasing pressure, but the color purity is not varied. But the luminance is increased with increasing Xe mixing ratio at constant pressure(200Toor). And also the color purity is improved by this process. The luminance is increased up to 40kHz, but the color purity with frequency is not varied.

  • PDF

Ar Gas 첨가에 따른 칼라 플라즈마 디스플레이 패널의 효율 향상 (Color AC Plasma Display Panel of Luminous Efficiency Improvement by adding Ar Gas)

  • 최훈영;민병국;이석현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.919-921
    • /
    • 1998
  • In Color AC Plasma Display Panel(PDP). Low luminous efficiency is a major problem. We measured luminous efficiency of PDP as a function of the Ar mixing ratio. Our results show that efficiency has improved by $5{\sim}10%$ at the condition of 0.5% Ar mixing ratio, compared with Ne-Xe(4%) or He-Ne-Xe(4%) (He:Ne = 7:3) gas.

  • PDF

Color Dispersion as an Indicator of Stellar Population Complexity for Galaxies in Clusters

  • 이준협;박민아;이혜란;오슬희
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.34.1-34.1
    • /
    • 2018
  • We investigate the properties of bright galaxies with various morphological types in Abell 1139 and Abell 2589, using the pixel color-magnitude diagram (pCMD) analysis. The 32 bright member galaxies ($Mr{\leq}-21.3mag$) are deeply imaged in the g and r bands in our CFHT/MegaCam observations, as a part of the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). We examine how the features of their pCMDs depend on galaxy morphology and infrared color. We find that the g - r color dispersion as a function of surface brightness (${\mu}r$) shows better performance in distinguishing galaxy morphology, than the mean g - r color does. The best set of parameters for galaxy classification appears to be a combination of the minimum color dispersion at ${\mu}r{\leq}21.2mag\;arcsec-2$ and the maximum color dispersion at $20.0{\leq}{\mu}r{\leq}21.0mag\;arcsec-2$: the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Moreover, the color dispersion of an elliptical galaxy appears to be correlated with its WISE infrared color ([4.6]-[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  • PDF

Color Gradients of Isolated Late-type Galaxies

  • 김지훈;임명신
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.32.1-32.1
    • /
    • 2012
  • Radial color gradient of disk galaxies has been a key tool for diagnosing the ages and metallicities of the stars and gas of these galaxies, and thus, the formation process of these disks. In many cases, observational data support the 'inside-out' picture of disk galaxy formation proposed by Larson (1976). In this scenario, gas within dark matter halos cools and accretes on to the outer disk while enhancing star formation in the disk. Recent discoveries of "extended ultra-viloet" (XUV) disks also show that majority of disk galaxy experience active star formation within out disks where gas surface density is quite low (Thilker et al. 2007; Gil de Paz et al. 2007). However, neither gas, nor stars stay put within galaxies. They rather migrate into bulges, disperse throughout galaxies, or flow into and out of galaxies via various mechanisms. There have been a few notable studies to investigate how radial star formation and metal abundance gradients vary across populations of disk galaxies systematically. However, the mechanisms driving gas transport are still poorly understood. Cross-matching various galaxy catalogs including KVAGC and UKIDSS, we are investigating if color gradients of late-type galaxies depend on their physical properties, especially on environmental properties. We will present the result from the pilot study on Karachentsev isolated galaxy catalog.

  • PDF

Ar Gas 첨가에 따른 칼라 플라즈마 디스플레이 패널의 효율 향상 (The Luminous Efficiency Improvement of Color AC Plasma Display Panel by adding Ar Gas)

  • 신재화;최훈영;이석현
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.132-136
    • /
    • 2002
  • In this study, we analyzed the luminous efficiencies of Ne-Xe-Ar and He-Ne-Xe-Ar mixing gas in compared with those of Ne-Xe and He-Ne-Xe mixing gas to improve luminous efficiency by adding a small amount of Ar gas. At the Xe 4%, the brightness of Ne-Xe and He-Ne-Xe mixing gas is higher than others. As the Xe % increases, power consumption decreases. Thus, in the Ne-Xe and He-Ne-Xe mixing gas of Xe 4%, we obtained maxium luminous efficiency. The Ar concentration is varied from 0.1% to 0.7% in this study. The luminous efficiency of the Ne-Xe(4%) mixing gas is improved to 1.16 and 1.13 lm/W by adding an Ar concentration of 0.4% and 0.5%, respectively. The luminous efficiency of the He-Ne-Xe(4%) (He : Ne = 7 : 3) mixing gas is considerably improved by adding an Ar concentration of above 0.3%. The maximum luminous efficiency of this mixing gas is 1.38 lm/W at the condition of adding an Ar concentration of 0.5%.