• Title/Summary/Keyword: color filter interpolation

Search Result 36, Processing Time 0.019 seconds

Enhanced Weighted Directional Demosaicking using Edge Indicator (에지 지시자를 이용한 향상된 방향 가중치 디모자이킹 알고리듬)

  • Ryu, Ji-Man;Yang, Si-Young;Lim, Tae-Hwan;Jung, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-279
    • /
    • 2010
  • A color image requires at least three color channels to obtain the full color image. However the image sensor obtains only the intensity of the brightness, that is, three image sensors are required for every pixel to capture the full color image. Since the image sensor is quiet expensive, most of digital still cameras adopt single image sensor array with color filter array (CFA) to reduce the size and the cost. Since the image obtained using single sensor array has only one color component per pixel, we need to reconstruct the missing two color components to obtain the full color image. We call this process as color filter interpolation or demosaicking. In this paper, demosaicking algorithm composed of two large step is proposed. Proposed algorithm is combined with several different algorithms such as Edge-directed demosaicking, Second-order gradients as correction terms, Smooth hue transition Interpolation, etc. The simulation results show that the proposed algorithm performs much better than the state-of-the-art demosaicking algorithms in terms of both subjective and objective qualities.

Color Filter Array Interpolation Algorithm for McMaster Dataset (McMaster Dataset을 위한 색상 보간 알고리듬)

  • Park, Bumjun;Lee, Kyungjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.121-124
    • /
    • 2015
  • 본 논문은 Multiscale Gradients (MSG)를 기반으로 한 Color Filter Array Interpolation을 배경으로 Kodak Dataset보다 실제 디지털 카메라로 촬영한 이미지에 가까운 McMaster Dataset에서 개선된 성능을 내는 알고리듬을 제안한다. MSG는 녹색 채널 보간, 녹색 채널 갱신, 빨간색, 파란색 채널 보간의 과정을 거친다. 이때 높은 스펙트럼 상관관계, 낮은 색채도, 낮은 색 경사도를 가진 Kodak Dataset과 달리 자연 이미지에서는 녹색 채널 갱신 과정의 추정방법을 사용하면 화질 및 Color Peak Signal to Noise Ratio (CPSNR)이 저하되는 것을 확인하였다. 이러한 실험결과를 바탕으로 개선된 필터와 색상 보간 과정을 통해 기존의 알고리듬에 비해 향상된 성능을 보여주는 알고리듬을 제안한다.

  • PDF

Edge-Adaptive Color Interpolation for CCD Image Sensor

  • Heo, Bong-Su;Hong, Hun-Seop;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The color interpolation scheme can play an important role in overcoming the physical limitation of the CCD image sensor and in increasing the resolution of color signals, while most conventional approaches result in blurred edges and false color artifacts. In this paper, we have proposed an improved edge-adaptive color interpolation scheme for a progressive scan CCD image sensor with RGB color filter array The edge indicator function proposed utilizes not only the within-channel correlation but also the cross-channel correlation, and reflects the edge characteristics of an image adaptively. The color components unavailable for at each channel are interpolated along the edge direction, not across the edges, so that aliasing artifacts are supressed. Furthermore, we eliminated false color artifacts resulting from the color image formation model in the edge-adaptive color interpolation scheme by adopting the switching algorithm based on the color edge detection. Simulation results of the proposed algorithm indicate that the improved edge-adaptive color interpolation scheme produces quantitatively better and visually more pleasing results than conventional approaches.

A new demosaicing method based on trilateral filter approach (세방향 필터 접근법에 기반한 새로운 디모자익싱 기법)

  • Kim, Taekwon;Kim, Kiyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.155-164
    • /
    • 2015
  • In this paper, we propose a new color interpolation method based on trilateral filter approach, which not only preserve the high-frequency components(image edge) while interpolating the missing raw data of color image(bayer data pattern), but also immune to the image noise components and better preserve the detail of the low-frequency components. The method is the trilateral filter approach applying a gradient to the low frequency components of the image signal in order to preserve the high-frequency components and the detail of the low-frequency components through the measure of the freedom of similarity among adjacent pixels. And also we perform Gaussian smoothing to the interpolated image data in order to robust to the noise. In this paper, we compare the conventional demosaicing algorithm and the proposed algorithm using 10 test images in terms of hue MAD, saturation MAD and CPSNR for the objective evaluation, and verify the performance of the proposed algorithm.

Edge-Directed Color Interpolation on Disjointed Color Filter Array (분리된 컬러 필터 배열을 이용한 에지 방향 컬러 보간 방법)

  • Oh, Hyun-Mook;Yoo, Du-Sic;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In this paper, we present a color interpolation algorithm that uses novel edge direction estimator and region classifier. The proposed edge direction estimator accurately determines the edge direction based on the correlation between the images obtained by the channel separated and down-sampled Bayer color filter array(CFA) pattern. The correlation is defined based on the similarity between the edge direction in the local region of the image and the shifting direction of the images. Also, the region of an image is defined as the flat, the edge, and the pattern-edge regions, where the edges are appeared repeatedly. When all the pixels in the image are classified into the three different regions, each pixel is interpolated horizontally or vertically according to the estimated direction. Experimental results show that the proposed algorithm outperforms the conventional edge-directed methods on objective and subjective criteria.

Demosaicing Algorithm Using Directional Neighboring Pixels (근접 화소들의 방향성을 이용한 디모자이킹 알고리듬)

  • Kim, Hee-Chang;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.742-748
    • /
    • 2009
  • Most commercial digital still cameras use a single sensor array (e.g., CMOS or CCD) with color filter array (CFA) to reduce the cost and size. Since the image obtained with CFA has only one color value per pixel, the demosaicing is needed to acquire missing two color values. Although many demosaicing methods have been proposed, they still have artifacts such as rainbow and zippering artifact. In this paper, we propose the simple demosaicing algorithm using tendency of neighbor pixels with the enhanced weighting function. In the experimental results, our algorithm shows much better subjective qualities of the images than conventional demosaicing algorithm and improves objective qualities.

Automatic Detection of Forgery in Cell phone Images using Analysis of CFA Pattern Characteristics in Imaging Sensor (휴대폰의 CFA 패턴특성을 이용한 사진 위변조 탐지)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1118-1121
    • /
    • 2010
  • With the advent of cell phone digital cameras, and sophisticated photo editing software, digital images can be easily manipulated and altered. Although good forgeries may leave no visual clues of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. Most digital camera equipped in cell phones employ a single image sensor in conjunction with a color filter array (CFA), and then interpolates the missing color samples to obtain a three channel color image. This interpolation introduces specific correlations which are likely to be destroyed when tampering with an image. We quantify the specific correlations introduced by CFA interpolation, and describe how these correlations, or lack thereof, can be automatically detected in any portion of an image. We show the efficacy of this approach in revealing traces of digital tampering in lossless and lossy compressed color images interpolated with several different CFA algorithms in test cell phones.

Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering (방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.110-116
    • /
    • 2017
  • This paper presents an effective demosaicking algorithm for color filter array (CFA) images acquired from single-sensor devices based on directional interpolation and nonlocal properties of the image. We interpolate the G channel considering diagonal directions as well as horizontal and vertical directions, using a small number of pixels to reflect local properties of the image. Then, we overcome image degradations, such as zipper effects near edges and false colors, by applying nonlocal means (NLM) filtering to the interpolated pixels. R and B channels are reproduced by using directional interpolation with information of the reconstructed G channel and NLM filtering. Experimental results for various McMaster images with high saturation and color changes show that the proposed algorithm accomplishes high PSNR compared with conventional methods. Moreover, the proposed method demonstrates better subjective quality compared with existing methods in terms of reduction of quality degradation, like false colors, and preservation of the image structures, such as edges and textures.

An Edge Directed Color Demosaicing Algorithm Considering Color Channel Correlation (컬러 채널 상관관계를 고려한 에지 방향성 컬러 디모자이킹 알고리즘)

  • Yoo, Du Sic;Lee, Min Seok;Kang, Moon Gi
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.619-630
    • /
    • 2013
  • In this paper, we propose an edge directed color demosaicing algorithm considering color channel correlation. The proposed method consists of local region classification step and edge directional interpolation step. In the first step, each region of a given Bayer image is classified as normal edge, pattern edge, and flat regions by using intra channel and inter channel gradients. Especially, two criteria and verification process for the normal edge and pattern edge classification are used to reduce edge direction estimation error, respectively. In the second step, edge directional interpolation process is performed according to characteristics of the classified regions. For horizontal and vertical directional interpolations, missing color components are obtained from interpolation equations based on intra channel and inter channel correlations in order to improve the performance of the directional interpolations. The simulation results show that the proposed algorithm outperforms conventional approaches in both objective and subjective terms.

Demosaicking of Hexagonally-Structured Bayer Color Filter Array (육각형 구조의 베이어 컬러 필터 배열에 대한 디모자익킹)

  • Lee, Kyungme;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1434-1440
    • /
    • 2014
  • This paper describes a demosaicking method for hexagonally-structured color filter array. Demosaicking is essential to acquire color images using color filter array (CFA) in single sensor imaging. Thus, CFA patterns have been discussed in order to improve image quality in single sensor imaging after the Bayer pattern are introduced. Advancements in imaging sensor technology recently introduce a hexagonal CFA pattern. The hexagonal CFA can be considered to be a 45-degree rotational version of the Bayer pattern, thus demosaicking can be implemented by an existing method with backward and forward 45-degree rotations. However, this approach requires heavy computing power and memory in image sensing devices because of the image rotations. To overcome this problem, we proposes a demosaicking method for a hexagonal Bayer CFA without rotations. In addition, we introduce a weighting parameter in our demosaicking method to improve image quality and to unifying exiting method with our method. Experimental results indicate that the proposed method is superior to conventional methods in terms of PSNR. In addition, some optimized values for the weighting parameter are provided experimentally.