• 제목/요약/키워드: collected thermal energy

검색결과 85건 처리시간 0.029초

에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석 (Analysis of Efficiency of Solar Hot Water System based on Energy Demand)

  • 전용준;박경순
    • 한국태양에너지학회 논문집
    • /
    • 제37권5호
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.

태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) - (Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector)

  • 송현갑;연광석;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제10권1호
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF

에너지 파일의 현장 열응답 시험에 관한 연구 (Evaluation of Thermal Response Test of Energy Pile)

  • 윤석;이승래;김민준;고규현
    • 한국지반공학회논문집
    • /
    • 제30권4호
    • /
    • pp.93-99
    • /
    • 2014
  • 최근 들어 경제적인 지열에너지 활용을 위하여 에너지 파일의 적용이 확대되고 있다. 특히 더 높은 열 교환 효율을 확보하고자 에너지 파일의 경우 통상적인 U자형 또는 W자형과 같은 라인형 지중 열교환기가 아닌 코일형 지중 열교환기를 매입하는 경우가 늘어나고 있다. 본 연구에서는 매립지 부지에 PHC 코일형 열교환기 형태의 에너지 파일을 설치하고 240시간 동안 현장 열응답 시험(thermal response test)을 실시하였다. 또한 현장에서 지층별로 시료를 채취하여 실내에서 현장 지층 물성으로 시료를 재조성한 후 비정상 탐침법(non-steady state probe method)을 이용하여 지층별 열전도도와 열확산계수를 측정하였고 등가의 열물성으로 환산하였다. 실험 결과 현장 열응답 시험에 의한 지반의 열전도도와 실내 탐침법으로 측정된 지반의 열전도도는 5%내에서 일치하였으며 아울러 지반의 또 하나의 중요한 설계인자인 등가 열확산계수의 측정방법도 제시하였다.

액체식 태양열난방계통에 관한 연구 (A Study on the liquid Type Solar Heating System)

  • 남평우
    • 대한설비공학회지:설비저널
    • /
    • 제8권4호
    • /
    • pp.221-236
    • /
    • 1979
  • The three years Performance of a liquid type solar heating system has been determined for a system which has been determined for a system which has been operating continuously since 1976 in Seoul with no serious maintenance. A flat plate collector is used to transform incident solar radiation into thermal energy. This energy is stored if the form of sensible energy and used as needed to supply the space heating loads. An electric auxiliary heaters are provided to supply energy for space heating load when the energy in the storage tank is depleted. The ratio of useful collected solar heat divided by the total solar radiation on the collector was obtained about 84 per cent. It is also obtained the relation between ratio of solar collector area to the heating area and the ratio of useful collected solar energy to the heating load for the useful design data. A comparison between the measured and simulated results with the solar space heating system is described. Hour by hour simulation is made on unsteady state basis using the system parameters and meteorological data at the experiment site. The result of comparison turned out satisfactory for the solar heating system, though the simulation was formed somewhat higher than by experimental.

  • PDF

폐태양전지(廢太陽電池)용 솔라리본으로부터 구리회수(回收)에 관한 연구(硏究) (Recovery of Copper from Spent Photovoltaic Ribbon in Solar Module)

  • 이진석;장보윤;김준수;안영수;강기환;왕제필
    • 자원리싸이클링
    • /
    • 제22권5호
    • /
    • pp.50-55
    • /
    • 2013
  • 폐 태양광 전지내의 구리리본전극으로부터 구리를 회수하기 위해 불활성 가스분위기하에서 $300-600^{\circ}C$로 열처리 하였다. 구리리본전극의 코팅층은 68.99 wt.%의 납과 31.21 wt.%의 주석으로 구성되어 있는데, 각각의 온도에서 코팅층을 용해한 후 반응도가니에 용해된 코팅층 회수하였다. 열처리 후 회수되어진 코팅층은 ICP-MS (Inductively coupled plasma mass spectrometry)로 성분 분석을 실시하였으며, 온도범위에 관계없이 95 wt.% 이상의 구리순도를 얻을 수 있었다. 구리리본전극 샘플의 횡단면은 SEM (scanning electron microscopy) and EDX (energy dispersive X-ray microscopy)로 관찰하였다.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • 제5권1호
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

PC에 의한 열중성자로 중성자의 무작위 특성 측정 (PC-Based Random Neutron Process Measurement in a Thermal Reactor)

  • Jun, Byung-Jin;Park, Sang-Jun;Hong, Kwang-Pyo;Lee, Chung-Sung
    • Nuclear Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.58-65
    • /
    • 1990
  • 열중성자로의 무작위 중성자 특성을 PC로써 측정하는 체계를 개발하고 이를 한국에너지연구소의 TRIGA Mark-II 원자로에 응용하였다. 그 결과 이 체계는 재래의 여러 방법에 비하여 많은 장점을 가지고 있음을 확인하였다. 아직은 한개의 계측기를 사용하였고, 즉발중성자만 고려한 시간 영역에 대하여 autocorrelation과 VTMR 두가지 방법으로 분석하였다. 두 방법의 결과는 서로 잘 일치하였으나 통계적인 신뢰도 면에서는 VTMR이 훨씬 나았고, 특히 임계 근처에서 이것이 두드러졌다. TRIGA Mark-II의 $\beta$/Λ 는 임계에서 -3$까지는 약 125/초, -4$이하에서는 약 150/초로 측정되었다.

  • PDF

F-chart 설계법(設計法)에 의한 태양열주택(太陽熱住宅)의 난방성능(暖房性能)에 관(關)한 연구(硏究) (A Study on the Thermal Performance of a Solar House by a F-chart Method)

  • 이영수;서정일;임장순
    • 태양에너지
    • /
    • 제2권2호
    • /
    • pp.1-9
    • /
    • 1982
  • This paper presents a method. for estimating the useful output of solar heating sys-terns. Heating load calculations, climatic data and various conditions are used in this procedure to estimate the fraction of the monthly heating load supplied by solar energy for a particular system the design procedure presented in this paper referred to the f-chart method. The results of this study are as follows; 1) The collected energy is not rised lineary to collector area. 2) If the heating area has equivalent solar collector area, the solar energy utilization for space heating is over 90%. 3) Transmittance- absorptance product for radiation at normal incidence, (${\tau}{\alpha}$)/(${\tau}{\alpha}$)n, during most of the heating season is 0.92 for a two-cover collector. 4) Orientation of the collector has little effect on the annual performance of solar heating system within the $15^{\circ}$.

  • PDF

COSMOS : A Computer Code for the Analysis of LWR $UO_2$ and MOX Fuel Rod

  • Koo, Yang-Hyun;Lee, Byung-Ho;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.541-554
    • /
    • 1998
  • A computer code COSMOS has been developed based on the CARO-D5 for the thermal analysis of LWR UO$_2$ and MOX fuel rod under steady-state and transient operating conditions. The main purpose of the COSMOS, which considers high turnup characteristics such as thermal conductivity degradation with turnup and rim formation at the outer part of fuel pellet, is to calculate temperature profile across fuel pellet and fission gas release up to high burnup. A new mechanistic fission gas release model developed based on physical processes has been incorporated into the code. In addition, the features of MOX fuel such as change in themo-mechanical properties and the effect of microscopic heterogeneity on fission gas release have been also taken into account so that it can be applied to MOX fuel. Another important feature of the COSMOS is that it can analyze fuel segment refabricated from base irradiated fuel rods in commercial reactors. This feature makes it possible to analyze database obtained from international projects such as the MALDEN and RISO, many of which were collected from refabricated fuel segments. The capacity of the COSMOS has been tested with some number of experimental results obtained from the HALDEN, RISO and FIGARO programs. Comparison with the measured data indicates that, although the COSMOS gives reasonable agreement, the current models need to be improved. This work is being performed using database available from the OECD/NEA.

  • PDF

일 최고, 최저 및 평균값을 이용한 시간단위 온도의 평가 (Evaluation of hourly temperature values using daily maximum, minimum and average values)

  • 이관호
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.81-87
    • /
    • 2009
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design.. Building designers often now predict the performance of buildings simulation programmes that require hourly weather data. However, not all weather stations provide hourly data. Climate prediction models such as HadCM3 also provide the daily average dry bulb temperature as well as the maximum and minimum. Hourly temperature values are available for building thermal simulations that accounts for future changes to climate. In order to make full use of these predicted future weather data in building simulation programmes, algorithms for downscaling daily values to hourly values are required. This paper describes a more accurate method for generating hourly temperature values in the South Korea that uses all three temperature parameters from climate model. All methods were evaluated for accuracy and stability in terms of coefficient of determination and cumulative error. They were compared with hourly data collected in Seoul and Ulsan, South Korea.