• Title/Summary/Keyword: collapse risk

Search Result 238, Processing Time 0.027 seconds

Proposing a Method for Robustness Index Evaluation of the Structures Based on the Risk Analysis of Main Shock and Aftershock

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1710-1722
    • /
    • 2018
  • Investigating remained damages from terrible earthquakes, it could be concluded that some events including explosion because of defect and failure in the building mechanical facilities or caused by gas leak, firing, aftershocks, etc., which are occurred during or a few time after the earthquake, will increase the effects of damages. In this paper, by introducing a complete risk analysis which included direct and indirect risks for earthquake (the main shock) and aftershock, the corresponding robustness index was created that called as "robustness index sequential critical events risk-based". One of the main properties of the intended robustness index is using progressive collapse percentage in its evaluation. Then, in a numerical example for a 4-storey moment resisting steel frame structure, a method is presented for obtaining all effective parameters in robustness index evaluation based on the intended risk and at last its results were reported.

Risk Assessment of small reservoir by the collapse using GIS (GIS를 이용한 농업용 저수지의 붕괴 피해 평가)

  • Kim, Yun-Soon;Kim, Han-Joong;Jung, Nam-Soo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.202-206
    • /
    • 2001
  • In this study, the risk assessment of small reservoir by collapse using GIS is evaluated. Direct damage distance from collapsed reservoir is estimated by empirical USBR equations and submerged area is calculated by USBR's idea. The amount of damage by collapsed reservoir is figured out by damage assessment of National Institute for Disaster Prevention.

  • PDF

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

Disasters Risk Assessment of Urban Areas by Geospatial Information Systems (지형공간정보체계에 의한 도시지역 재해위험도 평가)

  • Yoo, Hwan-Hee;Kim, Seong-Sam;Park, Ki-Youn;Choi, Woo-Suk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.41-52
    • /
    • 2005
  • The high density of population and building; can cause catastrophe in urban areas when natural or artificial disasters break out. The aim of this paper is to assess comprehensive disasters risk of urban areas by Geospatial Information System. For this purpose, we classified disasters risk of urban areas into low categories: flood, fire, building-collapse, and shelter, and then determined factors for hazard risk assessment respectively. The results of hazard assessment can be applied to minimize the demage of disasters in establishing the urban management planning. For more systematic and professional approach the further research is need to consider more disaster assessment factors and join with related experts.

  • PDF

Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames (내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.

Comparison of Flooding Patterns according to the Location of the Collapse of Dam body (저수지 댐 붕괴 지점에 따른 침수 양상 비교)

  • Danxun, Liu;Lee, Gil-Ha
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.461-470
    • /
    • 2022
  • When an agricultural soil dam collapses, the extent of inundation and the rate of diffusion vary depending on where the collapse occurs in the dam body. In this study, a dam collapse scenario was established and a two-dimensional numerical model FLO-2D was used to closely examine the inundation pattern of the downstream residential area according to the dam collapse point. The results were presented as a flood risk map showing the changes and patterns of the extent of inundation spread. The flood level and the time to reach the maximum water level vary depending on the point of collapse, and the inundation of the downstream area proceeds rapidly in the order of the midpoint, left point, and right point collapse. In the left collapse point, the submergence appeared about 0.5 hour slower than the middle point, and the right collapse point appeared about 1 hour slower than the middle point. Since the relative damage pattern is different depending on the dam collapse point, insurance and disaster countermeasures will have to be established differently.

A risk management system applicable to NATM tunnels: methodology development and application (NATM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Lee, Kang-Hyun;Kim, Byung-Kyu;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.155-170
    • /
    • 2020
  • In this paper, a risk management system applicable to NATM tunneling projects is proposed. After investigating case histories in NATM tunnel collapse, this paper analyzes the potential risk factors and their corresponding risk events during NATM tunnel construction. The risk factors are categorized into three groups: geological, design and construction risk factors. The risk events are also categorized into four types: excessive deformation, excessive deformation with subsidence, collapse inside tunnels, and collapse inside tunnels with subsidence. The paper identifies risk scenarios in consideration of the risk factors and proposes a risk analysis/evaluation method for the NATM tunnel risk scenarios. Based on the evaluation results, the optimal mitigation measure to handle the risk events is suggested. In order to effectively facilitate a series of risk management processes, it is necessary to develop a risk register and a management ledger for risk mitigation measures that are customized to NATM tunnels. Lastly, the risk management for an actual NATM tunnel construction site is performed to verify the validity of the proposed system.

Analysis of Topographical Factors in Woomyun Mountain Debris Flow Using GIS (GIS를 이용한 우면산 토석류 지형인자 분석)

  • Lee, Hanna;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.809-815
    • /
    • 2020
  • A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

WEB-BASED GEOGRAPHIC INFORMATION SYSTEM FOR CUT-SLOPE COLLAPSE RISK MANAGEMENT

  • HoYun Kang;InJoon Kang;Won-Suk Jang;YongGu Jang;GiBong Han
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1260-1265
    • /
    • 2009
  • Topographical features in South Korea is characterized that 70% of territory is composed of the mountains that can experience intense rainfall during storms in the summer and autumn. Efficient planning and management of landscape becomes utmost important since the cutting slopes in the mountain areas have been increased due to the limited construction areas for the roadway and residential development. This paper proposed an efficient way of slope management for the landslide risk by developing Web-GIS landslide risk management system. By deploying the Logistic Regression Analysis, the system could increase the prediction accuracy that the landslide disaster might be occurred. High resolution survey technology using GPS and Total-Station could extract the exact position and visual shape of the slopes that accurately describe the slope information. Through the proposed system, the prediction of damage areas from the landslide could also make it easy to efficiently identify the level of landslide risks via web-based user interface. It is expected that the proposed landslide risk management system can support the decision making framework during the identification, prediction, and management of the landslide risks.

  • PDF