• Title/Summary/Keyword: collapse risk

Search Result 238, Processing Time 0.024 seconds

Extreme Multi-Level Percutaneous Vertebroplasty for Newly Developed Multiple Adjacent Compression Fractures

  • Kim, Han-Woong;Song, Jae-Wook;Kwon, Austin;Kim, In-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.6
    • /
    • pp.378-380
    • /
    • 2009
  • Osteoporotic patients who undergo percutaneous vertebroplasty (PVP) have the risk of a repeated collapse of their adjacent vertebral body due to alteration of load transfer into the adjacent vertebral body. The authors have experienced a rare case of repeated osteoporotic vertebral compression fractures (VCF) resulting in extreme multi-level PVP. A 74-year-old female developed severe back pain after slipping down one month ago. Her X-ray and MR images indicated a T11 VCF. She underwent successful PVP with polymethylmethacrylate (PMMA). Two weeks later, she returned to our hospital due to a similar back pain. Repeated X-ray and MR images showed an adjacent VCF on T12. A retrial of PVP was performed on T12, which provided immediate pain relief. Since then, repeated collapses of the vertebral body occurred 12 times in 13 levels within a 24-month period. Each time the woman was admitted to our hospital, she was diagnosed of newly developed VCFs and underwent repeated PVPs with PMMA, which finally eased back pain. Based on our experience with this patient, repeated multiple PVP is not dangerous because its few and minor complications. Therefore, repeated PVP can serve as an effective treatment modality for extreme-multi level VCFs.

Investigation of wind actions and effects on the Leaning Tower of Pisa

  • Solari, Giovanni;Reinhold, Timothy A.;Livesey, Flora
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1998
  • This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

Stability of Tunnel under Shallow Overburden and Poor Rock Conditions Using Numerical Simulations (수치해석적 방법을 통한 저토피 및 암질불량구간의 터널 안정성 검토)

  • Kim, Jungkuk;Kim, Heesu;Ban, Hoki;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.39-47
    • /
    • 2021
  • Tunneling is widely increased in rail-road construction due to the large portion of mountainous regions in Korea as well as the improving running performance of train. Tunneling under poor rock condition, shallow overburden, or existing fault zone has high risk for collapse. Therefore, this study presents the stability of tunnel under unfavorable geological conditions using finite element methods.

Evaluation of Wind Load and Drag Coefficient of Insect Net in a Pear Orchard using Wind Tunnel Test (풍동실험을 통한 배과원 방충망의 풍하중 및 항력계수 평가)

  • Song, Hosung;Yu, Seok-Cheol;Kim, Yu Yong;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-83
    • /
    • 2019
  • Fruit bagging is a traditional way to produce high-quality fruit and to prevent damage from insects and diseases. Growing pears by non-bagging is concerned about the damage from insect, it can be controlled by installing a insect net facility. Wind load should be considered to design the insect net facility because it has the risk of collapse due to the strong wind. So we carried out wind tunnel test for measurement of drag force, where the insect net with porosity about 65% is selected as an experimental subject. As a result of the test, drag force was measured to be 244.14 N when insect net area and wind speed are $1m^2$ and 22.7 m/s respectively. And, drag coefficients for the insect net were found to be about 0.55~0.57, which may be used as the preliminary data to design the insect net facilities at the orchard.

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Overfishing and recent risk for collapse of fishery in coastal Mediterranean lagoon ecosystem (Karavasta lagoon, southeastern Adriatic sea)

  • Spase Shumka;Yukio Nagahama;Sarjmir Hoxha;Koji Asano
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • Beside that the fish species and their sub-populations are highly important as a keystone species in the coastal and marine ecosystem, there are very few studies on their presence, distribution and temporal variations within and around the lagoon ecosystems in Albania. This paper provides an updated review on the life cycle, fishery, exploitation state and management of the main species that are subject of commercial fishing in the Karavasta lagoon, southeastern Adriatic coast of Albania. Due to the fact that lagoons represent a continuum between continental and marine aquatic ecosystems they play a crucial role in species life cycles. Further on in the circumstances of rapid utilizations and environmental changes, anomalies in salinity and temperatures, accelerated anthropogenic influences their rate of vulnerability is highly increased. Following the requirements of the Water Framework Directive, transitional water, coastal lagoons and estuaries there is a need for urgent monitoring and management approaches. The commercial species include: European eel (Anguilla anguilla), species of Family Mugilidae (Mugil cephalus, Liza ramada, Liza salienes and Chelon labrosus), Seabream (Sparus aurata), Seabass (Dincentrarchus labrax), etc. Fish productivity is oscillating from maximum value of 61.95 kg/ha is recorded in period of 1975-80 and lower value of 31 kg/ha in year 2020. Our study highlights importance of fish and fishery long-term monitoring, and contributes to understand the driving factors in productivity, migration patterns and species ecology in the vital coastal ecosystems.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

The Status of Endangered Plants Distributed in the Middle Eastern Area of Korea and Evaluation of the Risk Factors (우리나라 중동부지역에 분포하는 멸종위기야생식물 현황과 위험요인 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Hong, Bo-Ram;Oh, Hyun-Kyung;Lee, Kyeong-Hwa;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.3
    • /
    • pp.291-307
    • /
    • 2016
  • Evaluation of the extinction risk of endangered plants at international, national as well as at regional levels is essential to the implementation of plans for direct conservation activities. Reports indicate that 34 endangered plants are distributed in the middle eastern area of Korea. For each endangered plant, we investigated the sites, area of extents, population size, and factors that affect population extinction. We assessed risk factors based on 10 evaluation criteria including the results from the investigation and the life traits each endangered plant has. As a result of evaluating the risk factors, these 34 endangered plants are classified into 3 groups: the first category comprises 12 endangered plants that require active and urgent conservation of habitats due to multiple risk factors; the second group has 16 endangered plants that should be able to persist with the removal of a few direct risk factors; the third category has 6 endangered plants that can persist with minimal management due to comparatively large distributed area and numerous individuals. It was found that most major risk factors in the population of endangered plants are caused by disruption of habitats and population extinction due to the increase of human habitation in the concerned areas, development and illegal harvesting. Futhermore, ecological collapse from decreasing habitats and malfunctioning mechanism of extinction and regeneration due to the changes of vegetational environment can be the other causes. From the area of the present investigations, we selected 5 regions according to the number of species and the frequency of appearance and importance of conservation measures. Also, we suggested a conservation strategy according to the regional characteristics. We suggest that the method for evaluating extinction risk of endangered plants includes distributional data and life traits of species. In addition, we underscore the necessity for understanding population dynamics and ecological niche of the each target species.

A Biomechanical Analysis of Various Surgical Procedures for Osteonecrosis of the Femoral Head using a Finite Element Method (유한요소법을 이용한 대퇴 골두내 무혈성 괴사증의 다양한 수술적 기법에 대한 생체역학적 분석)

  • Kim, J.S.;Lee, S.J.;Shin, J.W.;Kim, Y.S.;Choi, J.B.;Kim, Y.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.374-378
    • /
    • 1997
  • Operative procedures such as core drilling with and without fibular bone grafting have been recognized as the treatment methods for osteonecrosis of femoral head(ONFH) by delaying or preventing the collapse of the femoral head. In addition, core drilling with cementation using polymethylmethacrylate (PMMA) has been proposed recently as another surgical method. However, no definite treatment modality has been found yet while operative procedures remain controversial to many clinicians In this study, a finite element method(FEM) was employed to analyze and compare various surgical procedures of ONFH to provide a biomechanical insight. This study was based upon biomechanical findings which suggest stress concentration within the femoral head may facilitate the progression of the necrosis and eventual collapse. For this purpose, five anatomically relevant hip models were constructed in three dimensions : they were (1) intact(Type I), (2) necrotic(Type II), (3) core drilled only(Type III), (4) core drilled with fibular bone graft(Type IV), and (5) core drilled with cementation(Type V). Physiologically relevant loading were simulated. Resulting stresses were calculated. Our results showed that the volumetric percentage subjected to high stress in the necrotic cancellous region was greatest in the core drilled only model(Type III), followed by the necrotic(Type II), the bone graft (Type IV), and the cemented(Type V) models. Von Mises stresses at the tip of the graft(Type IV) was found to be twice more than those of cemented core(Type V) indicating the likelihood of the implant failure. In addition, stresses within the cemented core(Type V) were more evenly distributed and relatively lower than within the fibular bone graft(Type IV). In conclusion, our biomechanical analyses have demonstrated that the bone graft method(Type IV) and the cementation method(Type V) are both superior to the core decompression method(Type III) by reducing the high stress regions within the necrotic cancellous bone. Also it was found that the core region filled with PMMA(Type V) provides far smoother transfer of physiological load without causing the concentration of malignant stresses which may lead to the failure than with the fibular bone graft(Type IV). Therefore, considering the above results along with the degree of difficulties and risk of infection involved with preparation of the fibular bone graft, the cementation method appears to be a promising surgical treatment for the early stage of osteonecrosis of the femoral head.

  • PDF