• 제목/요약/키워드: collapse prevention

검색결과 179건 처리시간 0.027초

Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study

  • Wang, Jun;Ning, Jianguo;Qiu, Pengqi;Yang, Shang;Shang, Hefu
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.375-383
    • /
    • 2019
  • In underground retreating longwall coal mining, hard roof collapse is one of the most challenging safety problems for mined-out areas. Identifying precursors for hard roof collapse is of great importance for the development of warning systems related to collapse geohazards and ground control. In this case study, the Xinhe mine was chosen because it is a standard mine and the minable coal seam usually lies beneath hard strata. Real-time monitoring of hard roof collapse was performed in longwall face 5301 of the Xinhe mine using support resistance and microseismic (MS) monitoring; five hard roof collapse cases were identified. To reveal the characteristics of MS activity during hard roof collapse development and to identify its precursors, the change in MS parameters, such as MS event rate, energy release, bursting strain energy, b value and the relationships with hard roof collapse, were studied. This research indicates that some MS parameters showed irregularity before hard roof collapse. For the Xinhe coalmine, a substantial decrease in b value and a rapid increase in MS event rate were reliable hard roof collapse precursors. It is suggested that the b value has the highest predictive sensitivity, and the MS event rate has the second highest.

역해석기법을 이용한 앵커지지 흙막이벽체의 수치해석 (Numerical Analysis of Anchored In-situ wall using Back-Analysis Technique)

  • 우제일;정대석
    • 한국재난정보학회 논문집
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 연구목적: 본 연구에서는 수치해석을 통한 역해석기법을 이용 현장변위예측관리기법을 보완하는 안전관리 방안에 대한 연구를 수행하였다. 연구방법: 역해석기법을 이용하여 유한요소해석 기반인 MIDAS GTS/NX 프로그램을 이용 해석을 수행하였다. 붕괴현장의 계측데이터와 변위 경향을 가능한 근접시킨 뒤, 붕괴원인을 추정 후 붕괴방지 공법을 적용하였다. 연구결과: 역해석을 수행하여 얻은 결과물중 하나인 지반정수로 붕괴원인을 추정한 결과 앵커의 자유장 길이 불충분으로 확인 되었고, 붕괴방지 공법으로 앵커의 자유장 길이를 변화시켰으며, 변위가 현저히 감소되는 것을 확인할 수 있었다. 결론: 역해석기법을 현장관리에 참고, 붕괴원인을 추정하고 합리적인 붕괴방지 대책을 제시할 경우 붕괴 사고를 줄이는데 도움이 될 것이다.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Investigating the Effect of Prior Damage on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames

  • Ronagh, Hamid Reza;Behnam, Behrouz
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.209-220
    • /
    • 2012
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings that have been partially damaged as a result of a prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels of two portal frames, after they are pushed to arrive at a certain level of displacement corresponding to the mentioned performance level. This investigation is followed by a fire analysis of the damaged frames, examining the time taken for the damaged frames to collapse. As a point of reference, a fire analysis is also performed for undamaged frames and before the occurrence of earthquake. The results indicate that while there is minor difference between the fire resistances of the fire-alone situation and the frames pushed to the IO level of performance, a notable difference is observed between the fire-alone analysis and the frames pushed to arrive at LS and CP levels of performance and exposed to PEF. The results also show that exposing only the beams to fire results in a higher decline of the fire resistance, compared to exposing only the columns to fire. Furthermore, the results show that the frames pushed to arrive at LS and CP levels of performance collapse in a global collapse mode laterally, whereas at the IO level of performance and fire-alone situation, the collapse mechanism is mostly local through the collapse of beams. Whilst the investigation is conducted for a certain class of portal frames, the results confirm the need for the incorporation of PEF into the process of analysis and design, and provide some quantitative measures on the level of associated effects.

불균형력에 따른 철골보통중심가새골조의 붕괴모드 (Collapse Modes of Steel Ordinary Concentrically Braced Frames According to Unbalanced Forces)

  • 박진영;김서연;홍석재;김형준
    • 한국전산구조공학회논문집
    • /
    • 제28권3호
    • /
    • pp.249-257
    • /
    • 2015
  • 철골보통중심가새골조의 수직불균형력에 대한 설계 요구사항이 KBC2009에서 처음으로 도입하였고, 이를 통하여 설계지진에서의 인명안전성능이라는 목표내진성능을 만족하도록 유도하고 있다. 그러나 수직 불균형력의 영향이 ASCE7-10에서 암시적으로 제시하는 최대고려지진에서의 구조물 붕괴방지성능에 미치는 영향에 대한 연구는 매우 제한적으로 이루어지고 있어 KBC2009를 따라 설계된 철골보통중심가새골조의 붕괴성능을 조사할 필요가 있다. 이를 위하여 본 논문에서는 역V형 철골보통중심가새골조의 최대고려지진에서의 붕괴양상을 조사하였다. 두 가지 지반조건과 세 가지 다른 수직불균형력 조건을 해석변수로 하여 총 6개의 5층 규모의 철골보통중심가새골조 표본건물을 설계하였다. 비선형 정적해석과 비선형 동적해석을 통하여 표본건물들의 내진성능과 붕괴양상을 조사하였다. 해석결과를 통해 수직 불균형력은 철골보통중심가새골조의 내진성능에 지대한 영향을 미쳤고, 바람직한 붕괴양상과 붕괴방지성능을 달성하기 위하여 불균형력에 대한 적절한 고려가 필요한 것으로 나타났다.

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

전압다적해의 특성 및 유도전동기부하를 갖는 계통에 있어서의 전압안정 (Properties of Multiple Load Flow Solutions and Prevention of Voltage Collapse in System with Induction Motor Load)

  • Park, Jong-Keun
    • 대한전기학회논문지
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 1985
  • As is well known, the power equations of the N-node system have 2N-1 voltage solutions at most. The vlotage solutions are characterized by the introduction of the mode concept in this paper. There are two mode voltages at one node. One is defined as the (+) mode voltage and the other is defined as the (-) mode one. In this paper, we show that the (-) mode voltage responds to the increase of the power condenser almost adversly to the response of the (+) one. We study how to prevent the voltage collapse in the system with the induction motor load. The critical values of the gain and the time constant in case of the continuous power condenser control, and of the unit power condenser and the closing time delay in case of the discontinuous control for the prevention of the voltage collapse, are calculated. The effect of the composition ratio of the impedance load to the induction moter load on the above critical values are also investigated.

  • PDF

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse

  • Khaloo, Alireza;Omidi, Hossein
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.549-556
    • /
    • 2018
  • Progressive building collapse occurs when failure of a structural component leads to the failure and collapse of surrounding members, possibly promoting additional failure. Global system collapse will occur if the damaged system is unable to reach a new static equilibrium configuration. The most common type of primary failure which led to the progressive collapse phenomenon, is the sudden removal of a column by various factors. In this study, a method is proposed to prevent progressive collapse phenomena in structures subjected to removal of a single column. A vierendeel peripheral frame at roof level is used to redistribute the removed column's load on other columns of the structure. For analysis, quasi-static approach is used which considers various load combinations. This method, while economically affordable is easily applicable (also for new structures as well as for existing structures and without causing damage to their architectural requirements). Special emphasis is focused on the evolution of vertical displacements of column removal point. Even though additional stresses and displacements are experienced by removal of a structural load bearing column, the proposed method considerably reduces the displacement at the mentioned point and prevents the collapse of the structural frame.