• 제목/요약/키워드: collapse capacity

검색결과 362건 처리시간 0.023초

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

경량화용 박육부재의 형상비가 압궤특성에 미치는 영향 (Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight)

  • 정종안;김정호;양인영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

특수 중심가새골조의 연쇄붕괴 저항능력 평가 (Evaluation of Progressive Collapse Resisting Capacity of Special Concentrically Braced Frames)

  • 이영호;김진구;최현훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.319-324
    • /
    • 2008
  • In this study the progressive collapse potential of special concentrically braced frames were investigated using the nonlinear static. All of seven different brace types were considered. According to the pushdown analysis results, most braced frames designed according to current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted-V type braced frames showed superior ductile behavior during progressive collapse.

  • PDF

유한요소 극한해석을 이용한 단순체체모델의 붕괴거동해석 (Collapse Analysis of Simplified Vehicle Structure Models using Finite Element Limit Analysis)

  • 김현섭;허훈
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.1-9
    • /
    • 1998
  • The analysis concerns collapse behavior of framed vehicle models with the change of design parameters at the initial stage of conceptual design. Collapse analysis of a vehicle model with framed structures has been carried out using finite element limit analysis. The analysis makes sequential changes of design parameters from an initial model with frames of uniform section so as to stage then weak parts. As a result of those design changes, the collapse load of a model has been increased and the deflection toward a passenger room has been reduced. The results demonstrate the versatility of finite element limit analysis as a tool that confirms the safety of vehicle models.

  • PDF

붕괴하중을 받는 MR 댐퍼의 Bingham 모델을 이용한 저항성능 정해 (Exact Solution for Resistance Capacity utilizing Bingham Model of MR Dampers under Collapse Load)

  • 성지영;민경원;김진구
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.234-240
    • /
    • 2011
  • This study deals with progressive collapse of a structure retrofitted with MR dampers. In order to assess their effect of mitigation which prevents progressive collapse, control force ratio is defined by friction force of MR dampers divided by external force. First, simple model of a structure with MR dampers is suggested. Using the model, exact solution with the control force ratio is obtained. When and where the system is stopped is predicted by the derived solution. Through the dissipated energy by MR dampers during collapse event, equivalent damping ratio is derived. Finally, comparison of exact and equivalent solutions is presented.

Minimum-weight seismic design of a moment-resisting frame accounting for incremental collapse

  • Lee, Han-Seon
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.35-52
    • /
    • 2002
  • It was shown in the previous study (Lee and Bertero 1993) that incremental collapse can lead to the exhaustion of the plastic rotation capacity at critical regions in a structure when subjected to the number of load cycles and load intensities as expected during maximum credible earthquakes and that this type of collapse can be predicted using the shakedown analysis technique. In this study, a minimum-weight design methodology, which takes into account not only the prevention of this incremental collapse but also the requirements of the serviceability limit states, is proposed by using the shakedown analysis technique and a nonlinear programming algorithm (gradient projection method).

Luapunov 직접법에 의한 전력계통 전압안정도 해석 (A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function)

  • 문영현;박능수;이태식
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.

철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석 (Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames)

  • 신동현;김형준
    • 한국전산구조공학회논문집
    • /
    • 제28권4호
    • /
    • pp.351-359
    • /
    • 2015
  • 구조물의 붕괴성능을 정확하게 평가하기 위해서는 구조물과 관련된 구조부재 및 지반운동의 불확실성을 고려한 확률적 접근방식이 요구된다. 불확실성의 종류에 상관없이 불확실성은 구조물의 응답에 영향을 미치게 되는데, 구조물의 성능목표를 설정함에 있어 이러한 불확실성 전파를 예측할 필요가 있다. 최근 들어, 구조물의 붕괴성능을 평가하는 방법으로 사용되고 있는 증분동적해석은 지반운동과 관련된 임의적 불확실성을 해석과정에서 고려할 수 있다는 장점이 있으나, 확률론적 평가를 위한 또 다른 중요 요인인 인식론적 불확실성을 직접적으로 평가할 수 없다는 제한사항이 있다. 본 연구에서는 철골모멘트골조를 표본 건물로 선정하여 인식론적 불확실 요인으로 정의한 구조물의 고유감쇠, 지진중량, 구조부재의 항복강도 및 탄성계수가 구조물의 붕괴성능에 미치는 영향을 확률적으로 평가하였다. 이를 위하여 라틴 방격 추출법을 사용한 몬테카를로 시뮬레이션을 통해 증분동적해석을 수행하여 구조시스템 붕괴성능의 변동성을 정량적으로 예측하였다. 해석결과, 붕괴성능의 변동성에 인식론적 불확실성을 대표하는 변수 중에서 구조물 고유감쇠의 영향이 가장 두드러지는 것으로 나타났다.

마이크로파일로 보강된 모래지반의 지지력 증가효과에 관한 실험적 연구 (An Experimental Study on the Increase of the Bearing Capacity on Sandy Ground due to Micropile Reinforcement)

  • 김정동;임종철;이태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.411-416
    • /
    • 2003
  • As rapid industrialization continues in these days, construction in the down town areas increases. Since constructions are performed around old and existing structures, the need to provide reinforcements to protect the existing structures from collapse and damage arises. Furthermore, if the construction is to take place in the down town area, difficult work space and damage caused by noise, vibration and collapse of structure can't be ignored. Among the remedial measures available today, micropile reinforcement is considered the best method to remedy these problems. But up to the present the characteristics of micropiles and ground behaviour has not been proven and no standard design is not yet available. Therefore, most design are performed based on previous experiences. In this study, the difference in the bearing capacity with changing reinforcement angle, space and sphere around foundation was monitored. These results were induced to broaden heighten the limits of micropile application.

  • PDF

Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis

  • Breccolotti, Marco;Severini, Laura;Cavalagli, Nicola;Bonfigli, Federico M.;Gusella, Vittorio
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.541-553
    • /
    • 2018
  • In this paper a limit analysis based procedure for the rapid evaluation of the in-plane seismic capacity of masonry arch bridges is carried out. Attention has been paid to the effect of the backfill on the collapse load. A parametric investigation has been performed by varying the rise/span ratio and the results have been compared with those obtained by finite element modelling. The comparison highlights the conservative feature of the proposed model in terms of ultimate loads and a good agreement in terms of collapse mechanisms.