• Title/Summary/Keyword: collaborative filtering system

Search Result 505, Processing Time 0.023 seconds

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.

Generator of Dynamic User Profiles Based on Web Usage Mining (웹 사용 정보 마이닝 기반의 동적 사용자 프로파일 생성)

  • An, Kye-Sun;Go, Se-Jin;Jiong, Jun;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.389-390
    • /
    • 2002
  • It is important that acquire information about if customer has some habit in electronic commerce application of internet base that led in recommendation service for customer in dynamic web contents supply. Collaborative filtering that has been used as a standard approach to Web personalization can not get rapidly user's preference change due to static user profiles and has shortcomings such as reliance on user ratings, lack of scalability, and poor performance in the high-dimensional data. In order to overcome this drawbacks, Web usage mining has been prevalent. Web usage mining is a technique that discovers patterns from We usage data logged to server. Specially. a technique that discovers Web usage patterns and clusters patterns is used. However, the discovery of patterns using Afriori algorithm creates many useless patterns. In this paper, the enhanced method for the construction of dynamic user profiles using validated Web usage patterns is proposed. First, to discover patterns Apriori is used and in order to create clusters for user profiles, ARHP algorithm is chosen. Before creating clusters using discovered patterns, validation that removes useless patterns by Dempster-Shafer theory is performed. And user profiles are created dynamically based on current user sessions for Web personalization.

A New Item Recommendation Procedure Using Preference Boundary

  • Kim, Hyea-Kyeong;Jang, Moon-Kyoung;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.81-99
    • /
    • 2010
  • Lately, in consumers' markets the number of new items is rapidly increasing at an overwhelming rate while consumers have limited access to information about those new products in making a sensible, well-informed purchase. Therefore, item providers and customers need a system which recommends right items to right customers. Also, whenever new items are released, for instance, the recommender system specializing in new items can help item providers locate and identify potential customers. Currently, new items are being added to an existing system without being specially noted to consumers, making it difficult for consumers to identify and evaluate new products introduced in the markets. Most of previous approaches for recommender systems have to rely on the usage history of customers. For new items, this content-based (CB) approach is simply not available for the system to recommend those new items to potential consumers. Although collaborative filtering (CF) approach is not directly applicable to solve the new item problem, it would be a good idea to use the basic principle of CF which identifies similar customers, i,e. neighbors, and recommend items to those customers who have liked the similar items in the past. This research aims to suggest a hybrid recommendation procedure based on the preference boundary of target customer. We suggest the hybrid recommendation procedure using the preference boundary in the feature space for recommending new items only. The basic principle is that if a new item belongs within the preference boundary of a target customer, then it is evaluated to be preferred by the customer. Customers' preferences and characteristics of items including new items are represented in a feature space, and the scope or boundary of the target customer's preference is extended to those of neighbors'. The new item recommendation procedure consists of three steps. The first step is analyzing the profile of items, which are represented as k-dimensional feature values. The second step is to determine the representative point of the target customer's preference boundary, the centroid, based on a personal information set. To determine the centroid of preference boundary of a target customer, three algorithms are developed in this research: one is using the centroid of a target customer only (TC), the other is using centroid of a (dummy) big target customer that is composed of a target customer and his/her neighbors (BC), and another is using centroids of a target customer and his/her neighbors (NC). The third step is to determine the range of the preference boundary, the radius. The suggested algorithm Is using the average distance (AD) between the centroid and all purchased items. We test whether the CF-based approach to determine the centroid of the preference boundary improves the recommendation quality or not. For this purpose, we develop two hybrid algorithms, BC and NC, which use neighbors when deciding centroid of the preference boundary. To test the validity of hybrid algorithms, BC and NC, we developed CB-algorithm, TC, which uses target customers only. We measured effectiveness scores of suggested algorithms and compared them through a series of experiments with a set of real mobile image transaction data. We spilt the period between 1st June 2004 and 31st July and the period between 1st August and 31st August 2004 as a training set and a test set, respectively. The training set Is used to make the preference boundary, and the test set is used to evaluate the performance of the suggested hybrid recommendation procedure. The main aim of this research Is to compare the hybrid recommendation algorithm with the CB algorithm. To evaluate the performance of each algorithm, we compare the purchased new item list in test period with the recommended item list which is recommended by suggested algorithms. So we employ the evaluation metric to hit the ratio for evaluating our algorithms. The hit ratio is defined as the ratio of the hit set size to the recommended set size. The hit set size means the number of success of recommendations in our experiment, and the test set size means the number of purchased items during the test period. Experimental test result shows the hit ratio of BC and NC is bigger than that of TC. This means using neighbors Is more effective to recommend new items. That is hybrid algorithm using CF is more effective when recommending to consumers new items than the algorithm using only CB. The reason of the smaller hit ratio of BC than that of NC is that BC is defined as a dummy or virtual customer who purchased all items of target customers' and neighbors'. That is centroid of BC often shifts from that of TC, so it tends to reflect skewed characters of target customer. So the recommendation algorithm using NC shows the best hit ratio, because NC has sufficient information about target customers and their neighbors without damaging the information about the target customers.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.