• Title/Summary/Keyword: collaborative Business Process

Search Result 112, Processing Time 0.021 seconds

Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

  • Kim, Mingun;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.107-120
    • /
    • 2014
  • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

An Empirical Study on Effects of Global Alliance Activities on Alliance Innovations of Korean Companies (한국기업의 글로벌 제휴활동이 제휴혁신에 미치는 영향에 관한 실증연구)

  • Jeong, Jong-Sik
    • International Commerce and Information Review
    • /
    • v.13 no.3
    • /
    • pp.229-248
    • /
    • 2011
  • The increasing complexity of business and social settings bas lead to innovation becoming a strategic imperative. The need for innovation in the quest for competitive advantage also means that firms must be dynamic and flexible. This is often achieved through collaborative arrangements such as strategic alliances or strategic network Many organizations form alliances by leveraging their resources to gain access to the partner's skills and capabilities; ultimately to enhance innovation and performance. We demonstrate empirically that the "chain of innovation" is central to the process of innovation in global alliances. This chain comprises the creativity and learning processes and knowledge stock in alliances. Our empirical analysis is based on a survey of alliances that resulted in 114 responses. For management, this research bas significant potential in guiding attention to the chain of innovation, to better manage the overall process of innovation in alliances. Our work shows that more effective creativity and learning processes and a greater knowledge stock lead to a more effective alliance innovation process. Managers therefore, need to concentrate on creating environments wherein the processes of creativity and learning are fostered, increasing the alliance knowledge stock and in turn, increasing innovative output via an effective innovation process.

  • PDF

Product-Sharing and Outcome Generation: New Contributions of Libraries to Research, Learning and Professional Development in Japanese Context

  • Oda, Mitsuhiro
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.61-74
    • /
    • 2011
  • The author analyses the challenging activities of Japanese libraries in this decade by launching two keywords; "product-sharing" and "outcome generation." "Product-sharing" means that libraries share knowledge, skills, and records which are produced as the result of the services or in the process of activities. And "outcome generation" means that libraries generate any efficiency or effectiveness through their services to users. Using these concepts, reported are the current situation and aspects of Japanese libraries which try to make various contributions to the society; research and learning of the people, and education and training for professional librarians, and so on. In the analysis, the author shows some examples of "product-sharing" at first, including the records of reference transaction and the multi-functioned online public access catalogue. Especially, focused is on the various possibility and adoptability of the Collaborative Reference Database System of the National Diet Library of Japan. This system is one of digital reference service in Japan, and the database of reference transaction records is expected to be useful for research and academic studyies as knowledge-base of professional librarians. And the system is also expected to be a platform for LIS education and professional development in the e-learning environment. Secondly, as the examples of "outcome generation", explained are the problem-solving-type activities, and provision of the collection about books on struggling against disease and illness. A few examples of outcome in the problem-solving-type activities are these; increase of sales in the services for shop managers, business persons, and entrepreneurs, contribution to affluent daily life by providing the local information services to residents and neighbourhoods, and etc. And for both the patients with serious cases and their family or those who nurse them, books about other persons' notes or memorandum are the greatest support, and sometime healing. The author discuss the 'raison d'etre' of these activities focusing on public libraries in Japan.

Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization (중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발)

  • Sangil Lee;Yeong-WoongYu;Dong-Gil Na
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.

Design of a Web-Based System for Collaborative Power-Boat Manufacturing (파워보트 협업 생산을 위한 웹기반 컨텐츠 관리 시스템 설계)

  • Lee, Philippe;Lee, Dong-Kun;Back, Myung-Gi;Oh, Dae-Kyun;Choi, Yang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • The business environment is changing rapidly because of the global crisis. In order to survive and enhance competitiveness in the global market, global manufacturing companies are trying to overcome the crisis through the convergence of production infrastructure and IT technology. The importance of systems to support the integration of manufacturing processes, collaboration in product development, and information integration of providers and producers is therefore increasing. In this paper, research is conducted on the design and implementation of a collaboration system to support a power-boat manufacturing company in this situation of increased demand for collaboration and information integration. The system was designed through product-structure and production-process analysis, support product data management, and enterprise contents management. The company involved in the power-boat development project is expected to show an improvement in productivity through the integrated management of information and collaboration provided by this system.

Analysis of Domestic SNA-based Governance Study Trends (소셜네트워크분석을 통한 국내 거버넌스 연구 동향 분석)

  • Kim, Na-Rang;Choi, Hyung-Rim;Lee, Taihun
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.35-45
    • /
    • 2018
  • Research on the establishment of new governance aimed at efficient policy planning and the implementation thereof by the government has been conducted in response to social changes. Nonetheless, governance is comprehensive and encompasses different meanings; it takes various forms in the process of its actual application. Therefore, systematic classification of research on governance and analysis on its research trend are required. Accordingly, three researchers who majored in policy sciences, business informatics, and library and information science, respectively, searched for theses related to governance published since 2016 from Research Information Sharing Service and conducted a social network analysis (SNA) on them. According to their research results, the main research topics were largely classified into collaborative governance and local governance. Keywords throughout the topics included network, participation, conflict, and trust in line with the characteristics of governance. Representative subjects of governance included education, urban regeneration, and the environment. Further, measurement of betweenness centrality showed local governance was a main topic for convergent research. This study will lead to a greater understanding of research on governance and help activate such research. One limitation of this study is that it analyzed only theses with the keywords but not all theses on governance. Follow-up research should analyze all theses on governance and statistically verify them with SNA indexes.

A Study on Open Source Transition Strategy of Record System (기록시스템의 오픈소스화 전략 연구)

  • An, Dae-jin;Yim, Jin-hee
    • The Korean Journal of Archival Studies
    • /
    • no.52
    • /
    • pp.119-170
    • /
    • 2017
  • This study aims to analyze the environment for the open-source records system and to identify the risk and requirements for the success of the strategy in Korea. For this, Chapter 2 presented a review of the strategic benefits of open source to public organizations, developers, and users. It also discussed the process of cooperatively developing and releasing the source code and the technology infrastructure supporting open source. In Chapter 3, six representative open-source projects in the field of records management were selected, and case studies were conducted. To derive comprehensive implications, we have divided the main development body of open-source projects into international organizations, international cooperation systems, national archives, and software development companies. We also analyzed the background and purpose of each project, the agents of development and funding, the governance model, the development period and cost, the business model and software architecture, the community composition, and the licensing strategy. Through this, we have derived four critical success factors. In terms of technology, a component-based design was required; therefore, we proposed a microservice architecture and a model-view-controller design pattern. Next, it was necessary to reestablish system requirements of records center and archives. Moreover, we also proposed a dual licensing strategy to allow developers to easily participate in open-source projects. Lastly, we emphasized a strong governance structure and an effective cooperation framework to create a sustainable community. For a record system to be open-source successfully in an organization-centered market, the roles of software developers and end users should be exercised more in the community. To achieve this, it is important to build various collaborative tools and development infrastructure from a planning stage to a centralized one.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.