• Title/Summary/Keyword: cold work hardening

Search Result 32, Processing Time 0.016 seconds

Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.

Temperature and Dependence of the Microhardness of Rhenium Sheets (리늄판의 미세경도 온도 및 응력의존성)

  • Yun, Seok-Yeong;Lagerlof, K.P.D.
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.335-342
    • /
    • 2000
  • The microhardness of rhenium sheets was determined as a function of indentation load and temperature. The temperature dependence of the microhardness between room temperatures and $1000 ^{\circ}C$was studied using a hot microhardness tester equipped with a Vickers indenter. The load dependence of the microhardness was investigated using oth a Vickers and a Knoop indenter. The indentation size effect (ISE) was well explained using the normalized Meyers law. The hardness of the annealed rhenium sheet approached that of the as-rolled sheets at large indentation loads because of work-hardening under the indenter during indentation. The hardness at zero load(obtained from extrapolation of the load dependence of the hardness) suggested that the hardness is controlled by two different mech-anisms having different thermal activation. At low temperature the activation energy for the mechanism controlling the hardness was approximately 0.02 eV , Whereas at higher temperatures that was approximately 0.15eV. The tranisi-tion temperature between the two different controlling mechanisms was about $250^{\circ}C$.

  • PDF