• Title/Summary/Keyword: cold water adaptation

Search Result 16, Processing Time 0.029 seconds

Effect of Climate Change Characteristics on Operation of Water Purification Plant (정수장 운영에 영향을 미치는 기후변화 요인 분석)

  • Youjung Jang;Hyeonwoo Choi;Seojun Lee;Jaeyoung Choi;Hyeonsoo Choi;Heekyong Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.89-100
    • /
    • 2024
  • Climate change has a broad impact on the entire water environment, and this impact is growing. Climate adaptation in water supply systems often involves quantity and quality control, but there has been a lack of research examining the impacts of climatic factors on water supply productivity and operation conditions. Therefore, the present study focused on, first, building a database of climatic factors and water purification operating conditions, and then identifying the correlations between factors to reveal their impacts. News big data was analyzed with keywords of climatic factors and water supply systems in either nationwide or region-wide analyses. Metropolitan area exhibited more issues with cold waves whereas there were more issues with drought in the Southern Chungcheong area. A survey was conducted to seek experts' opinions on the climatic impacts leading to these effects. Pre-chlorination due to drought, high-turbidity of intake water due to rainfall, an increase of toxins in intake water due to heat waves, and low water temperature due to cold waves were expected. Pearson correlation analysis was conducted based on meteorological data and the operating data of a water purification plant. Heavy rain resulted in 13 days of high turbidity, and the subsequent low turbidity conditions required 3 days of high coagulant dosage. This insight is expected to help inform the design of operation manuals for waterworks in response to climate change.

Cold Pressor Response to Seasonal Variation in Winter and Summer (국소한냉자극이 전신 및 국소혈액순환에 미치는 영향 -제 2 보 : 동계 및 하계의 계절변화에 따른 한냉반응-)

  • Park, Won-Gyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 1983
  • A possibility whether the appearance of adaptation to cold climate during winter could occur or not in Taegu area was evaluated by comparing the data obtained in winter with that obtained by the same method in summer. Circulatory response was induced by the immersion of one hand in the cold water. The systemic and local responses in the blood circulation from the immersed hand and the unimmersed opposite hand were observed simultaneously. In addition Galvanic skin resistance(GSR) that is influenced by the activity of autonomic nervous system and the vascular tonicity was recorded. The experiment was performed by examining sixty healthy college students in winter and fifty in summer, whose mean age was 21.0, mean weight $60.6{\pm}0.90\;kg(male)$ and $48.3{\pm}0.98\;kg(female)$. The cold stimulus was applied by immersing the left hand into the cold water of $5^{\circ}C$ for 3 minutes, and the response was observed on immersed left hand and unimmersed right hand simultaneously. The observation was made through determining mean blood pressure, heart rate, amplitude of photoelectric capillary pulse (APCP) and GSR. The results obtained are as follows: The mean blood pressure was elevated during the cold stimulation. The increase of blood pressure in summer was more remarkable than in winter. At the recovery period the blood pressure was decreased to the control level in winter but the decrease below the control level was observed in summer. The increase of heart rate in summer was more remarkable than in winter during the cold stimulation. At the recovery period heart rate in both winter and summer was decreased below the control level. During the cold stimulation the APCP was decreased on both hands in winter. However it was more prominent on left hand indicating additional direct cold effect on immersed hand. In summer, the decrease of APCP during immersion was less remarkable than that in winter, but the regain of APCP was faster than that in winter at the recovery period. And the prompt increase of APCP over the control level has been obtained at the 3 minutes of the recovery period. The GSR was remarkably increased on immersed hand but slightly decreased on unimmersed opposite hand during the cold stimulation. Thus the finding on immersed hand indicates that the local direct effect of cold water is more prominent than the systemic effect, where as the finding on unimmersed hand indicates that the circulatory response to painful stress elicited by the cold stimulation is more prominent than cold temperature itself. In summary, it seems that the systemic circulatory response to the local cold stimulation of the one hand is arised more from the secondary elicited pain sensation and less from the low water temperature. On the contrary to the report of Kim et $al^{39)}$, the adaptation phenomena in blood pressure to the relatively mild cold climate in winter was not observed in this study. The difference of circulatory response observed in this study between winter and summer may be due to the difference of the magnitude of subjective sensation of the cold water stimulation by the seasonal changes in air temperature.

  • PDF

Insect Adaptations to Changing Environments - Temperature and Humidity

  • Singh, Tribhuwan;Bhat, Madan Mohan;Khan, Mohammad Ashraf
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.155-164
    • /
    • 2009
  • The most important factors in environment that influence the physiology of insects are temperature and humidity. Insects display a remarkable range of adaptations to changing environments and maintain their internal temperature (thermoregulation) and water content within tolerable limits, despite wide fluctuations in their surroundings. Adaptation is a complex and dynamic state that widely differs in species. Surviving under changing environment in insects depends on dispersal, habitat selection, habitat modification, relationship with ice and water, resistance to cold, diapause and developmental rate, sensitivity to environmental signals and syntheses of variety of cryoprotectant molecules. The mulberry silkworm (Bombyx mori) is very delicate and sensitive to environmental fluctuations and unable to survive naturally because of their domestication since ancient times. Thus, the adaptability to environmental conditions in the silkworm is quite different from those of wild insects. Temperature, humidity, air circulation, gases and photoperiod etc. shows a significant interaction in their effect on the physiology of silkworm depending upon the combination of factors and developmental stage affecting growth, development, productivity and quality of silk. An attempt has been made in this article to briefly discuss adaptation in insects with special emphasis on the role of environmental factors and their fluctuations and its significance in the physiology of mulberry silkworm, B. mori.

Assessing Vulnerability to Climate Change of the Physical Infrastructure in Korea Through a Survey of Professionals (우리나라 사회기반시설의 기후변화 취약성 평가 - 전문가 설문조사를 바탕으로 -)

  • Myeong, Soojeong;Yi, Donggyu
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.347-357
    • /
    • 2009
  • This study conducted a vulnerability assessment on Korea's physical infrastructure to provide base data for developing strategies to strengthen Korea's ability to adapt to climate change. The assessment was conducted by surveying professionals in the field of infrastructure and climate change science. A vulnerability assessment was carried out for seven climate change events: average temperature increases, sea level rise, typhoons and storm surges, floods and heavy rain, drought, severe cold, and heat waves. The survey asked respondents questions with respect to the consequences of each climate change event, the urgency of adaptation to climate change, and the scale of investment for adaptation to each climate change event. Thereafter, management priorities for infrastructure were devised and implications for policy development were suggested. The results showed that respondents expected the possibility of "typhoons and storm surges" and "floods and heavy rain" to be the most high. Respondents indicated that infrastructure related to water, transportation, and the built environment were more vulnerable to climate change. The most vulnerable facilities included river related facilities such as dams and riverbanks in the "water" category and seaports and roads in the "transport and communication" category. The results found were consistent with the history of natural disasters in Korea.

Studies on Vascular Responses to Cold Stimuli in the Korean Diving Women (한냉자극(寒冷刺戟)에 대한 한국해녀의 혈관계 반응(血管系反應)에 관한 연구)

  • Paik, K.S.;Kim, C.K.;Han, D.S.;Kang, B.S.;Hong, S.K.
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.59-66
    • /
    • 1969
  • Experiments on thermoregulatory responses to cold immersion stimulus were carried out in September, 1968 (summer studies) and February, 1969 (winter studies). Eight each of ama and control subject were selected at random from a same community in Yong-Do Island, Pusan. The results obtained are summarized as follows: 1) The rate of fall in muscle temperature of forearm during a 30 min-immersion in $6^{\circ}C$ water bath was significantly slower in the ama in winter and was about the same in the two groups in summer. However, the magnitude of change in the skin temperature and the heat fluxes observed during immersion period was not significantly different either between groups or between seasons. 2) Both finger blood flow and skin temperature during one hr-immersion in $6^{\circ}C$ water bath decreased significantly in the ama as compared to the control. The magnitude of cold-induced vasodilatation during immersion period was significantly greater in the control in winter. However, the time of onset and blood flow at onset showed no significant relation between groups. 3) The magnitude of reactive hyperemia after a 5 min-arterial occlusion in both air and $15^{\circ}C$ water bath was significantly lower in the ana than in the control. In control subjects, post-occluded blood flow in water was significantly greater than in air, while in the ama it decreased to 1/2 of control values. The time required for the return of blood flow to resting values in the air was faster in the ama than in the control but was the same in water in the two groups. 4) The results suggest that vasoconstrictor tone increased in the ama in winter, indicating the development of vascular adaptation as a part of cold acclimatization.

  • PDF

Trends in the effects of climate change on terrestrial ecosystems in the Republic of Korea

  • Choi, Sei-Woong;Kong, Woo-Seok;Hwang, Ga-Young;Koo, Kyung Ah
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.117-129
    • /
    • 2021
  • In this review, we aimed to synthesize the current knowledge on the observed and projected effects of climate change on the ecosystems of Korea (i.e., the Republic of Korea (ROK) or South Korea), as well as the main causes of vulnerability and options for adaptation in these ecosystems based on a range of ecological and biogeographical data. To this end, we compiled a set of peer-reviewed papers published since 2014. We found that publication of climate-related studies on plants has decreased in the field of plant phenology and physiology, whereas such publication has rapidly increased in plant and animal community ecology, reflecting the range shifts and abundance change that are occurring under climate change. Plant phenology studies showed that climate change has increased growing seasons by advancing the timing of flowering and budburst while delaying the timing of leafing out. Community ecology studies indicated that the future ranges of cold-adapted plants and animals could shrink or shift toward northern and high-elevation areas, whereas the ranges of warm-adapted organisms could expand and/or shift toward the areas that the aforementioned cold-adapted biota previously occupied. This review provides useful information and new insights that will improve understanding of climate change effects on the ecosystems of Korea. Moreover, it will serve as a reference for policy-makers seeking to establish future sectoral adaptation options for protection against climate change.

Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger Protein (PIF1) Gene

  • Yun, Sung-Chul;Kwon, Hawk-Bin
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.389-394
    • /
    • 2008
  • The ecophysiological changes occurring upon cold stress were studied using cold tolerant transgenic and wild-type tobacco plants. In a previous study, cold tolerance in tobacco was induced by the introduction of a gene encoding the zinc finger transcription factor, PIF1. Gas-exchange measurements including net photosynthesis and stomatal conductance were performed prior to, in the middle of, and after a cold-stress treatment of $1{\pm}2^{\circ}C$ for 96 h in each of the four seasons. In both transgenic and wild-type plants, gas-exchange parameters were severely decreased in the middle of the cold treatment, but had recovered after 2-3 h of adaptation in a greenhouse. Most t-test comparisons on gas-exchange measurements between the two plant types did not show statistical significance. Wild-type plants had slightly more water-soaked damage on the leaves than the transgenic plants. A light-response curve did not show any differences between the two plant types. However, the curve for assimilation-internal $CO_2$ in wild-type plants showed a much higher slope than that of the PIF1 transgenic plants. This means that the wild-type plant is more capable of regenerating Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and has greater electron transport capacity. In conclusion, cold-resistant transgenic tobacco plants demonstrated a better recovery of net photosynthesis and stomatal conductance after cold-stress treatment compared to wild-type plants, but the ecophysiological recoveries of the transgenic plants were not statistically significant.

Adenyl Cyclase Activity in Cold-acclimatized Animals (한냉적응이 Adenyl Cyclase Activity에 미치는 영향)

  • Kang, Bok-Soon;Lee, Sang-Ho;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 1974
  • The object of this research is aimed to determine the activity of adenyl cyclase in both skeletal muscle sarcolemma and fat cell ghost of epididymal adipose tissue isolated from rats exposed to cold for various length of time in an attempt to evaluate whether the tissue sensitivity to catecholamine is increased when rats are exposed to cold for long periods of time Methods: a)Animals: Albino rats ranging in weight from 150 to 200 gm were used throughout this study. For experimental purposes, the rats are divided into two groups: experimental animals were place4 in a cold room at $4^{\circ}C$, controls being kept at $25^{\circ}C$. At the end of 2, 4, 6, 12, and 16 weeks. exposure to cold the rats were used to measure the adenyl cyclase activity. b) Isolation of plasma membrane from skeletal muscle and adipose tissue: The Plasma membrane of skeletal muscle from hind limbs of rats are prepared by the method employed by Rosenthal et at. and fat cell ghost of epididymal adipose tissue of rats by the method employed by Rodbell. c) Adenyl cyclase assay: Adenyl cyclase activity were measured by the method employed by Marinetti et al. Briefly, plasma membrane was incubated with $3^H-ATP$, various amount of noradrenaline and other incubation mixture at $37^{\circ}C$ for 20 minutes. After stopping the enzyme reaction by immersion in boiling water, carrier 3',5'-AMP was added to the system as a marker and $100\;{\mu}1$ aliquots of incubation mixture were pipetted on $20{\time}20$ Whatman No. 3 MM filter paper for one dimensional chromatography. The cyclic AMP spots were cut off and placed in counting vials containing 10ml of Bray's scintillation cocktail. Radioactivity was determined with a Packard Tri-Carb liquid scintillation counter. The enzyme activity is expressed as nanomoles of cyclic AMP produced per mg of membrane per hour. Result: 1. Average adenyl cyclase activity in the plasma membrane of skeletal muscle before and after noradrenaline administration was significantly higher in the cold-exposed rats as compared to the control. Continuous exposure to cold Produced an increased adenyl cyclase activity before and after noradrenaline administration. Adenyl cyclase activity reached peak levels at the 6 weeks exposure to told and level of adenyl cyclase activity remained high. Noradrenaline administration to the incubation medium induced a significant increase in adenyl cyclase activity and the degree of stimulation were proportional to the hormonal concentration But the rate of inclement in adenyl cyclase activity by noradreasline was the same in both groups. 2. Adenyl cyclase activity in fat cell ghost between cold exposed and control rats showed no significant differences before and after noradreualine administration. In summary, it can be concluded that cold adaptation give rise an increased activity of adenyl cyclase in plasma membrane of skeletal muscle in rats.

  • PDF

Ephemera separigata, a New Species of Ephemeridae (Insecta: Ephemeroptera) from Korea (한국산 하루살이과(곤충강: 하루살이목)의 1신종 가는무늬하루살이의 보고)

  • Yeon Jae Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 1995
  • Mature larva and male and female adults of an ephemerid mayfly (Ephemeroptera : Ephemeridae) ,Ephemera separigata n.sp., were described from Korea. Larvae and adults of the species were distinguished from other Ephemera spp. by a apir of narrow and laterally oriented longitudinal stripses on the abodminal terga 7-9 . Larvae of the species adapted to cold water high mountain torrents(altitude 500-700m) where substrates were sand, gravel, and a large portion of pebbles and cobbles. Altitudinal adaptations between Korean Ephemera spp. were briefly discussed.

  • PDF

Structural Interpretation of Properties and Flavors of Drugs (사기오미론(四氣五味論)의 구조적 해석)

  • Cho, Yong-Ju;Kim, Jin-Ju
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.23-33
    • /
    • 2005
  • Four Properties and five Flavors of Drugs is interpreted by adaptation of human body to the environmental theory(天人相應). The Structural model of the body is compared with sky, earth, sun and moon (天, 地, 日, 月). The natural changes of the four seasons give rise to that of Four Properties and five Flavors of Drugs. On equal terms it is happened in our body. On this study we can draw an analogy between sky, earth, sun & moon (天, 地, 日, 月) and the body. The six bu(六腑) is related to the earth, the five ju(五主) to the sky, the five jang(五臟) to the sun, the meridians system (經絡) to the moon. When spring, the air is warm, the water element of the earth is ascending, and the earth gives birth to the sour flavor. Like this, the water element is absorbed by six bu and then is ascended to the meridian system. When summer, the air is hot and the water element of the earth is floated, the earth make the bitter flavor. In the same way, the six bu absorbed the hot air from the five ju and the water element is quickly absorbed by six bu and then the water element is ascended to the meridian system. When rainy season (長夏), the earth creates the sweet flavor The sweet flavor give warmer energy to the five jang and the six bu. When autumn, the earth change the sweet flavor into pungent. The earth gives warmer energy to the sky, because of cool weather According to same process, the pungent flavor give warmer energy to the five jang and the six bu, and the meridian system gets back the water element from the five ju. When winter, the air is cold and the water element of the earth is hidden. The sky and the earth are not interchangeable. At that time, the earth produce the salty flavor and the water element is keeping in the meridian system.

  • PDF