• Title/Summary/Keyword: cold sea wind

Search Result 118, Processing Time 0.033 seconds

Correlation Analysis of UA Using Wind Data of AWS/ASOS and SST in Summer in the East Sea (AWS/ASOS 바람자료를 이용한 여름철 동해 연안역의 용승지수와 수온과의 상관성)

  • Kim, Ju-Yeon;Han, In-Seong;Ahn, Ji-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.773-784
    • /
    • 2018
  • In this study, we examined the UA (upwelling age) using wind data of AWS/ASOS in the East Sea coast and the correlation between UA and SST (sea surface temperature) from May to August in 1995 to 2016. The data used the 6 observations of the wind data of AWS/ASOS and the SST data of the COD/RISA provided by the National Institute and Fisheries Science near the East Sea coast. The UA was calculated quantitatively low but it rose when the actual cold water mass occurred. Correlation analysis between UA and SST showed the negative (-) r (correlation coefficient) predominately. At the time of cold-water mass in June to August 2013, the r had a very high negative value of -0.65 to -0.89 in the 6 observations. It proved that as the UA increases, the SST is lower. By knowing the UA, we were able to evaluate the trend of upwelling in the cold-water mass of the East Sea coast in the long term and it will contribute to minimizing the damage to aquatic organisms according to the size and intensity of the upwelling.

Study on Rice Growing Environment Against Cold Sea Wind in Eastern Coastal Area of Korean Peninsula (동해안 냉해풍지역의 벼 생육환경 연구)

  • Kim, Jeong-Il;Lee, Ji-Yoon;Park, Dong-Soo;Park, No-Bong;Kwon, Oh-Deog;Chang, Jae-Ki;Lee, Ji-Hun;Kim, Sang-Yeol;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • This study was conducted to analysis a major cause of rice yield reduction in 4 research points, 1, 2, 3, and 5km, from coastline in the East Sea. There were great changes of temperature in each research point, though the average temperature a day was no difference between each research point. Each temperature in 1, 2, and 3km research points was 8, 7, and $4^{\circ}C$ lower than in 5km when cold salty wind was generated due to cold pool. As it was close in coastline, its soil was abundant sand components, little silt and clay soil components and lacking in cation exchange capacity(CEC). And plant height became a smaller, heading date was delayed for 3~4 days, and dry weight was reduced. Also, it was to be down percent of fertile grain. As cultivation site was close in seaside, its decline was larger because of reduction of panicle number per hill. It was "Samdeogbyeo" that was variety adapted in cold salty wind, having yield potential more than 90% in 2km.

On the Cold Water Mass Around the Southeast Coast of Korean Peninsula

  • An, Hui Soo
    • 한국해양학회지
    • /
    • v.9 no.2
    • /
    • pp.10-18
    • /
    • 1974
  • The cold water mass around the southeast coast of the Korean Peninsula is analyzed by using CSK data from 1966 through 1970. It is shown that this water mass flows down from the region offshore of Jukbyun to the area of Youngil Bay along the 100meter contour line of bottom topography. In ordinary summer conditions when the current velocity in the Korea Strait is usually above about 50cm/sec and the wind direction is southwest, the cold water ascends to the surface and makes the surface temperature gradient large, unless disturbed by a tropical cyclon. The bottom water of the Korea Strait is formed by the stratification after the Tsushima intermediate water and the Japan Sea intermediate water have been mixed. In winter the Tsushima intermediate water with high salinity sinks rapidly around the inlet of the Japan Sea and prevents the Japan Sea intemediate water from entering the Korea Strait.

  • PDF

Long-term Trend Analysis of Cold Waters along the Eastern Coast of South Korea (동해 냉수대 발생역의 장기 변동 분석)

  • Kim, Ju-Yeon;Han, In-Seong;Ahn, Ji-Suk;Park, Myung-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • A long-term trend analysis of cold water masses along eastern coast of South Korea was performed during summer, based on wind speed, wind direction, and sea surface temperature (SST) data. Wind data collected over a 22-year period (1997-2011) were compared with another set of data collected over the successive 7-year (2012-2018), highlighting a general decrease in the frequency and speed of south winds. However, both the frequency and speed of these winds have been higher in June between 2012-2018, rather than between 1997-2011. The cold water season between July and August was faster during the 7-year period; moreover, the SSTs registered around Gangneung (EN) rose by $0.5^{\circ}C- 1.8^{\circ}C$, while those around Yeongdeok (EC) and Gijang (ES) increased by only $0.1^{\circ}C-0.3^{\circ}C$. The number of cold water days during the 7-year period, compared to those recorded during previous years (1990-2011, satellite SST data by NOAA/AVHRR), decreased in the proximity of Yeongdeok and Gijang, but increased in the proximity of Kangneung. Additionally, the number of cold water days around Kangneung, Yeongdeok, and Gijang increased in June highlighting a geographical and temporal change in the occurrence of cold waters. These observation can be explained by variations in the pressure distribution that should have weakened the East Asian monsoon, affecting the direction and speed of winds that regulate the flow of cold waters.

Numerical Simulation of Upwelling Appearance near the Southeastern Coast of Korea (한국 남동 연안역의 용승현상에 관한 수치실험)

  • Kim, Dong-Sun;Kim, Dae-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • To investigate the appearance of cold water by upwelling effect near Ulsan-Gampo of the southeastern coast in Korea on June, 1999, we carried out a numerical experiment by 3-dimensional diagnostic numerical model. Appearance of cold water by the result of numerical experiment was due to upwelling by wind effect at 50-100m depth near Ulsan-Gampo coast. This result was mused by using a model to 2 times of existing wind magnitude near Busan, Ulsan and Gampo that is 5.0m/sec wind. Therefore, to illustrate the phenomenon of extraordinary marine environment like upwelling event and so forth, appropriate wind data at sea should be used instead of those on land.

  • PDF

Water Temperature Prediction Study Using Feature Extraction and Reconstruction based on LSTM-Autoencoder

  • Gu-Deuk Song;Su-Hyun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.13-20
    • /
    • 2023
  • In this paper, we propose a water temperature prediction method using feature extraction and reconstructed data based on LSTM-Autoencoder. We used multivariate time series data such as sea surface water temperature in the Naksan area of the East Sea where the cold water zone phenomenon occurred, and wind direction and wind speed that affect water temperature. Using the LSTM-Autoencoder model, we used three types of data: feature data extracted through dimensionality reduction of the original data combined with multivariate data of the original data, reconstructed data, and original data. The three types of data were trained by the LSTM model to predict sea surface water temperature and evaluated the accuracy. As a result, the sea surface water temperature prediction accuracy using feature extraction of LSTM-Autoencoder confirmed the best performance with MAE 0.3652, RMSE 0.5604, MAPE 3.309%. The result of this study are expected to be able to prevent damage from natural disasters by improving the prediction accuracy of sea surface temperature changes rapidly such as the cold water zone.

Structure of Upwelling off the Southease Coast of Korea (夏秀 韓國 南東海岸의 湧昇의 構造)

  • Lee, Jae-Chul;Na, Jung-Yul
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.6-19
    • /
    • 1985
  • Hydrographic data and daily time series of longshore wind, sea level and sea surface temperature were used in order to explain why the upwelling effect in SST is especially prominent near Ulgi-Gampo although the sea level records along the whole southeast coast show a nearly uniform upwelling-downwelling response to wind. Regional difference in intensity of the wind-induced upwelling represented by the SST decrease is attributed to the combined influence of two factors; one is the baroclinic tilting of isotherms due to the East Korea Warm Current (EKWC) near the Ulgi-Gampo coast, the other is the topographic effects around the southeast coast. Baroclinic tilting effect of EKWC which is generally strongest near the coast of Ulgi to Gampo results in both of the shoaling of cold water and the westward trapping of the coldest bottom water over the shallower shelf rather than the deepest troough region off that coast regardless of the season. Therefore, becacse of the cold water ready for upwelling at the subsurface layer, SST responds very rapidly to the upwelling-favorable winds of summer only off the Ulgi-Gampo coast. Spreading isobaths from Pusan to Gempo can reinforce the upwelling of the cold bottom water and its westward trapping.

  • PDF

Distributions of temperature and salinity in relation to ebb, turn of tide and flood of the Bottol Bada in July, 2004 (2004년 7월 봇돌바다의 썰물, 전류 및 밀물시 수온과 염분 분포)

  • Choi Yong-Kyu;Cho Eun-Seob;Lee Yong-Hwa;Lee Young-Sik
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.167-175
    • /
    • 2005
  • Based on the observation on 20, 23 and 26 July 2004, the distributions of temperature, salinity and stratification was investigated in relation to ebb, turn of tide and flood. The results are as follows: I) The high temperature and low saline water with $23.5\~24.0^{\circ}C\;and\;32.4\~33.0psu$ existed at Naro Island. 2) The cold surface water below $21.0^{\circ}C\;and\;33.0\~33.4psu$ appeared in the area near Gae Island and Geumo Island. 3) The cold and saline water, below $24.0^{\circ}C$ at the surface and $17.0^{\circ}C$ near the bottom, $32.8\~33.8psu$ at the surface and $33.8\~34.0psu$ near the bottom, existed in Sori Island. These waters were more saline compared to the South Sea Coastal Water with about 31.8psu. This suggests that the oceanic saline water intruded into the Bottol Bada through the area near Sori Island. The stratification appeared during all the observation periods due to a high solar radiation of $22MJ/m^2$, and a weak wind speed of 2.9m/s on the average while the mean speed of wind in July is around 3.9 m/s. It qualitatively suggested that the stratification was maintained during the observation periods because of a high solar radiation, a weak wind speed and intrusion of saline oceanic water.

A Study on Prediction System of Sea Fogs in the East Sea (동해의 해무 예측 시스템 연구)

  • 서장원;오희진;안중배;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.121-131
    • /
    • 2003
  • We have found that the east coast of Korea has had few sea fogs on January, February, November and December for the past 20 years by the analysis of monthly fog frequency and duration time. These phenomena appear to relate to the topographical characteristics of which the Taebaek Mountains descends toward the east to bar the radiation fog. On the other hand, the cause of occurring the spring and summer fog which has 90% of the whole frequency is divided into three cases. The first is the steam fog caused by the advection of the northeast cold air current on the East Sea due to the extension of Okhotsk High. The second is the advection fog caused by cooling and saturation of warm airmass advected on cold sea surface. And the last is the frontal fog caused by the supply of enough vapor due to the movement of low-pressure system and the advection of cold air behind a cold front. While, we simulate the sea fog for the period of the case studies by implementing fog prediction system(DUT-METRI) that makes it possible to forecast the fog in the vertical section of neighborhood of the East Sea and to predict the sea surface wind, relative humidity, ceiling height, visibility etc. Finally we verified this result by satellite image.

Temporal and Spatial Variation of the Mesoscale Cold Core Eddy in the East China Sea Using Satellite Remote Sensing (원격탐사에 의한 동중국해 중규모 와동류의 시공간적 변동 연구)

  • Suh Young-Sang;Jang Lee-Hyun;Lee Na-Kyung;Ahn Yu-Hwan;Yoon Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2004
  • The mechanism of cold core eddy formation was investigated using boundary conditions between the East China coastal cold water and the Kuroshio Warm Current, wind data related to the monsoon which was measured by QuikSCAT, and the bottom topography of the East China Sea. When winds blow from the southeast at an intensity comparable to that in the winter period in 1999 and 2003, the warm Kuroshio and Tsushima Current became stronger, and temperatures were considerably higher than those of the extended cold water of the coast of the East China. At that time, the cold water was captured by warm water from the Kuroshio and the Tsushima Current. This facilitated the formation of mesoscale cold core eddies with diameter of 150km in the East China Sea in May, 1999 and February, 2003. The cold core eddy which was detected by NOAA, SeaWiFS and QuikSCAT satellites. The East China Sea is considered to be important not only as a good fishing ground but also nursery and spawning area for many kinds of fishes. Therefore, it would be worth studying spatio-temporal variations of the cold core eddy in the environmental conditions of the northwestern East China Sea using systematic remote sensing techniques.