• Title/Summary/Keyword: cold forging

Search Result 373, Processing Time 0.023 seconds

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

A Study on Optimal Design Rule for Forward Extrusion Die (냉간 단조용 전방압출금형의 최적구조 설계에 관한 연구)

  • Kim, C.H.;Kim, S.Y.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 1999
  • Lots of products are made in various working conditions, depending on the size and the shape of them. Usually, at first, the die for new items had been designed on the basis of experience and know-how, and then modified through trial and error. At a die design stage most of drawings have been drawn manually. Recently some forging companies save design time by repeated utilization of standardized parts with registered data base. In this study the automated die design technique for forward extrusion of axisymmetric products is developed. A standardized die system is proposed from the investigation of ones employed frequently in the metal forming field and the design rules for cold extrusion die. A design example of forward extrusion die is given and discussed.

  • PDF

A Study on the Reliability Analysis of Al Oil Pressure Switch for Automobiles (Al 소재의 자동차용 Oil Pressure Switch의 신뢰도 분석에 관한 연구)

  • Cho, Myung-Ho;Kim, Tae-Hun;Rhie, Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.150-156
    • /
    • 2009
  • The oil pressure switch(OPS) for automobile is very important part to prevent an overheated engine and other problems by checking the operation of an engine oil system and displaying oil signs on a dashboard. OPS is the part that receives various stress caused by temperature, vibration, and corrosion in an engine room. Regarding existing steel OPS cases, there occur field errors due to the rust, and much concern comes from the low anticorrosion caused by CR6+ Free according to the restrictions of heavy metals. Therefore, the study analyzed average life, the failure rate, and reliability through the tests of performance according to temperature changes, mechanical strength, and run-test in order to confirm if the use of the oil pressure switch with Al of anti-corrosion can improves the reliability, instead of the existing steel products.

A Study on the Optimal Design of the Brake Tube-End for Automobiles (승용차용 브레이크 Tube-End의 최적설계에 관한 연구)

  • 한규택;박정식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process (냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;김정민;강성수
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

Die design system for deep drawing and ironing of high pressure gas cylinder

  • Yoon Ji-Hun;Choi Young;Park Yoon-So
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 2005
  • This paper describes a research work on the die design for the deep drawing & ironing(D. D. I) of high pressure gas cylinder. D. D. I die set is large-sized die used in horizontal press, which is usually composed of a drawing, and an ironing die. Design method of D. D. I die set is very different from that of conventional cold forging die set. Outer diameter of the die set is fixed because of press specification and that of the insert should be as small as possible for saving material cost. In this study, D. D. I die set has been designed to consider those characteristics, and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel (매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Seong-Jun;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

A Study on the Backward Extrusion of Internal Spline (내부 스플라인의 후방압출에 관한 연구)

  • Cho, YongIl;Choi, JongUng;Qiu, Yuangen;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.

A Study on the Development of Deep Drawing Press using a Rotating Disk (회전원판을 이용한 디프드로잉용 프레스 개발에 관한 연구)

  • 황병복;강성호;김진목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.69-78
    • /
    • 1994
  • A rotating disk is introduced to be applied to the deep drawing press. Several characteristics are summarized to see the basics of deep drawing of sheet metal in terms of load-stroke relationship and formability. Many conventional drawing presses, which are mostly link-type presses, are also shown to be compared with the rotating disk-type press. Performances of the new press are kinematically analyzed it terms of load-main gear angle relationship, stroke-gear angle relationship, and slide velocity-gear angle relationship and they are compared with those of conventional types', e. g. crank press and so on. The comparison show kinematically better performance of rotating disk-type press than that of conventional ones. Also, the new press are proven to be one of the best press for mass production in terms of cycle time. Applicability of the rotating disk press to deep drawing and cold forging work is introduced. The new press is described in terms of economy such that the cost of new press would be much lower than those of conventional types'.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.