• Title/Summary/Keyword: cold extrusion

Search Result 142, Processing Time 0.028 seconds

The Influence of TiB2 Particle on the Mechanical Property of Cu-TiB2 Composites (Cu-TiB2 복합재료의 기계적 성질에 미치는 TiB2 입자의 영향)

  • Kang Kae-Myung;Choi Jong Un
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • The mechanical and electrical properties of $Cu-TiB_2$ composites prepared by hot extrusion and cold drawing according to the variation of $TiB_2$ contents and the size of $TiB_2$ particle have been studied. The experimental results showed that the electrical conductivity was decreased with increasing the $TiB_2$ content, and their tensile strength and hardness increased inversely. In the case of the same content of $TiB_2$ particle, the smaller $TiB_2$ particle, the higher their mechanical properties. The electrical conductivity of $Cu-TiB_2$ composites showed more than 70%IACS. Their yield strength and hardness were more than 120 MPa and HRB 60~70, respectively.

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A New Cold Extrusion Process of Helical Gear and its Upper Bound Analysis (헬리컬기어의 새로운 냉간압출법과 상계해석에 관한 연구)

  • Choe, Jae-Chan;Jo, Hae-Yong;Gwon, Hyeok-Heung;Lee, Eon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.12-28
    • /
    • 1992
  • A new helical gear extrusion process was proposed and its numerical solution program based on the upper bound method was developed. In the analysis the involute curve was used as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical gear were successfully calculated. These numerical solutions were in good agreement with experimental data. In the experiment, die life was greatly improved compared with that of Samanta process and 4 .approx. 5 class helical gear of KS standard for automobile transmission was successfully manufactured.

  • PDF

Process Design of Piston-Pin for Automobile by the Flow Control (유동제어를 통한 자동차용 피스톤-펀의 공정설계)

  • 김동진;김병민;이동주
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.151-159
    • /
    • 2001
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In combined cold extrusion of piston-pin, lapping defect, which is a kind of flow defect, appears by the dead metal zone. This appearance evidently happens in products with a thin thickness to be pierced for the dimensional accuracy and the decrease of material loss. The flow defect that occurs in piston-pin has bad effects on the strength and the fatigue life of piston-pin. Therefore, it is important to predict and prevent defects in the early stage of process design. The best method that can prevent flow defect is removing or reducing dead metal zone through material flow control. The finite element simulations are applied to analyze the flow defect. This study proposes processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experimental ones for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

Process Design in Cold Forging of the Backward and Forward Extruded Part (전.후방 압출품의 냉간단조 공정설계)

  • Min, G.S.;Choi, J.;Choi, J.C.;Kim, B.M.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.57-64
    • /
    • 1997
  • The process design of backward and forward extrusion of axisymmetric part has been studied in this paper. The important factors of cold forging process with complex geometry are the design of initial billet shape, the possibility of forming by one-stage operation and the determination of preform shapes, etc. Based on the systematic procedure of process sequence design, the forming operation of cold forged part is analyzed by the commercial finite element program, DEFORM. The design criteria are forming load, geo- metrical filling without defect and a sound distribution of effective strain in final product. It is noted that one step of preform operation is required to obtain the final product. Numerical result is compared with experi- mental one. It is found that the analyzed result is in good agreement with actual forming result.

  • PDF

A Study of Metal Technology in Ancient Silla Dynasity (고대신라의 금속기술 연구)

  • 강성군;조종수
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1975
  • The crorosion film of gilt bronz, silver and iron objects, which were excaved from Ancient Tomb of Silla Dynasty, was removed by the electrolytic reduction process. These metallic objects were mainly investigated for microstructure, designs and gilting film etc. Most iron objects might be made by hot forging process. The cold extrusion technique might be used for gold and silver objects, in addition to an amalgam method might be applied for the gilting Au film on Cu-alloy surface. For the gilting on glass surface, first, a Cu alloy was cladded on glass , next, Au-film was obtained on the Cu-ally by the amagum method.

  • PDF

Finite Element Analysis and Process Planning about the Auto Transmission Solenoid Valve using of Multi-Former (다단-포머를 이용한 오토트랜스 미션용 솔레노이드 밸브 공정설계 및 유한요소해석)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The process design of forward Extrusion and Upsetting of Axi-symmetric part has been studied in this paper. During the cold forging product; auto transmission Solenoid Valve part, the defects such as folding and under-fill can be appeared by the improperly controlled metal flow. In this study, to reduce the folding and under-fill the design of experiments has been used to find out the significant design variables in the design of forging process. This paper deals with an Process Planning with which designer can determine operation sequences even after only a little experience in Process Planning of Multi-Former products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge-base consisting of design rules is built. Based on the systematic procedure of process sequence design, the forming operation of cold forged auto transmission Solenoid Valve part is analyzed by the commercial Finite Element program, DEFORM/2D.

A Study on the Process Sequence Design of a Short-Neck Flange (숏넥 플랜지의 공정설계에 관한 연구)

  • 장용석;최진화;고병두;이호용;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.127-134
    • /
    • 2000
  • The current three-stage cold farming process to produce a flange is investigated for the purpose of improvement of manufacturing process. The main goal of this study is to obtain an appropriate process sequence, which can produce the required part with less manufacturing cost. The current process sequence is simulated using finite element method and design criteria are examined. Based on the results of simulation of the current three-stage process. a design strategy for improving the process sequence is analyzed using the thick-walled pipes. Because it has a reduced process-sequence without buckling of the workpiece or overloading of tools, the new process has distinct advantages over the conventional process. Numerical results show that the newly proposed process with selected presses is the most economical way to produce the required part.

  • PDF

Study on the Cold Forging Process of Aluminum Pipe Yoke using Sliding Die for Reducing Friction (마찰저감을 위한 슬라이딩 금형을 적용한 알루미늄 파이프 요크 냉간 단조공정에 관한 연구)

  • S. M. Lee;I. K. Lee;S. Y. Lee;;J. W. Park;W. S. Hwang;Y. H. Moon;S. K. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2023
  • The aim of this study is to manufacture an aluminum pipe yoke of automotive steering system for lightweight. In a multistage cold forging process for aluminum pipe yoke, the surface defects frequently occur due to excessive deformation or friction during extrusion process for forming hollow pipe part. It is import to reduce the friction between the material and the forging die. This study investigated a multistage forging process with sliding die to reduce friction for aluminum pipe yoke. After evaluating by FE analysis, the forging experiment with the sliding die was carried out. As a result, it was possible to manufacture a sound aluminum pipe yoke.