• Title/Summary/Keyword: coil

Search Result 3,847, Processing Time 0.035 seconds

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

Reviewing of Operating Stability about Pulse Detonation Engine's Ignition Circuit to the Type of Power Sources (점화 신호 종류에 따른 PDE 점화회로의 작동 안정성 연구)

  • Kim, Jungmin;Han, Hyung-Seok;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • A pulse detonation engine (PDE) requires high operating frequency greater than 100 Hz to get meaning thrust as a propulsion devise. Thus a PDE needs an ignition circuit operating precisely at high operating frequencies. In this paper AC(alternating current) and DC(direct current) types of ignition circuits were designed and compared. Each circuit was tested at operating frequencies from 16.66 to 100.00 Hz by measuring the input signal of each circuit and the voltage change in the primary coil of the transformer. Results show that the DC power circuit can attain a maximum error rate of 5.15% at higher operating frequencies, whereas the AC power circuit displays a negligible agreement with the operating signal at frequencies greater than 33.33 Hz. Therefore it is confirmed that DC-powered ignition circuit is preferable for the PDE operating at high frequencies.

Four-Year Experience Using an Advanced Interdisciplinary Hybrid Operating Room : Potentials in Treatment of Cerebrovascular Disease

  • Jeon, Hong Jun;Lee, Jong Young;Cho, Byung-Moon;Yoon, Dae Young;Oh, Sae-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.35-45
    • /
    • 2019
  • Objective : To describe our experiences with a fully equipped high-end digital subtraction angiography (DSA) system within a hybrid operating room (OR). Methods : A single-plane DSA system with 3-dimensional rotational angiography, cone-beam computed tomography (CBCT), and real-time navigation software was used in our hybrid OR. Between April 2014 and January 2018, 191 sessions of cerebrovascular procedures were performed in our hybrid OR. After the retrospective review of all cases, the procedures were categorized into three subcategorical procedures : combined endovascular and surgical procedure, complementary rescue procedure during intervention and surgery, and frameless stereotaxic operation. Results : Forty-nine of 191 procedures were performed using hybrid techniques. Four cases of blood blister aneurysms and a ruptured posterior inferior cerebellar artery aneurysm were treated using bypass surgery and endovascular trapping. Eight cases of ruptured aneurysm with intracranial hemorrhage (ICH) were treated by partial embolization and surgical clipping. Six cases of ruptured arteriovenous malformation with ICH were treated by Onyx embolization of nidus and subsequent surgical removal of nidus and ICH. Two (5.4%) of the 37 cases of pre-mature rupture during clipping were secured by endovascular coil embolization. In one (0.8%) complicated case of 103 intra-arterial thrombectomy procedures, emergency surgical embolectomy with bypass surgery was performed. In 27 cases of ICH, frameless stereotaxic hematoma aspiration was performed using $XperGuide^{(R)}$ system (Philips Medical Systems, Best, the Netherlands). All procedures were performed in single sessions without any procedural complications. Conclusion : Hybrid OR with a fully equipped DSA system could provide precise and safe treatment strategies for cerebrovascular diseases. Especially, we could suggest a strategy to cope flexibly in complex lesions or unexpected situations in hybrid OR. CBCT with real-time navigation software could augment the usefulness of hybrid OR.

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

Analysis and Design Technique of a Spiral Inductor for a Wireless Charging of Electric Vehicle (전기자동차 무선 충전용 스파이럴 인덕터의 해석 및 설계 기법)

  • Hwang, In-Gab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.142-149
    • /
    • 2019
  • The coils to transmit the electric energy are necessary to charge an electric vehicle wirelessly. There are several types of coils, from basic circular coils to DD-type coils for enhancing the coupling effect between two coils. However, DD-type coils with a good coupling effect between coils have a disadvantage in use because of the structure complexity of the power conversion device of transmitting and receiving side. In this paper, we propose a method to calculate the inductance value and to design the size of the spiral inductor which is convenient to fabricate when the power is transmitted wirelessly by using two coils in free space. Since the bifurcation phenomenon occurs when the XLm value is similar to the load resistance value in the resonator the XLm value was selected to be equal to the minimum load resistance value to minimize this phenomenon, and the inductance value required for the resonator was calculated. In order to realize the calculated inductance value by the spiral inductor, the relationship between the inductance value and the size, the number of turns, the total coil length of a spiral inductor was investigated. In addition, the change of coupling coefficient k according to the horizontal separation of two coils was examined and an appropriate inductor was selected.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

The Structural Studies of Biomimetic Peptides P99 Derived from Apo B-100 by NMR

  • Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2020
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo were act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P99 (KGTYG LSCQR DPNTG RLNGE) out of B-group peptides carrying the highest value of IgM antigens were selected for structural studies that may provide antigen specificity. Circular Dichroism (CD) spectra were measured for peptide secondary structure in the range of 190-260 nm. Experimental results show that P99 has pseudo α-helice and random coil structure. Homonuclear (COSY, TOCSY, NOESY) 2D-NMR experiments were carried out for NMR signal assignments and structure determination for P99. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P99. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P99 obtained upon superposition of all atoms were in the set range. The solution state P99 has mixed structure of pseudo α-helix and β-turn(Gln[9] to Thr[13]). These NMR results are well consistent with secondary structure from experimental results of circular dichroism. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Effect of nicotine on orthodontic tooth movement and bone remodeling in rats

  • Lee, Sung-Hee;Cha, Jung-Yul;Choi, Sung-Hwan;Kim, Baek-il;Cha, Jae-Kook;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.282-292
    • /
    • 2021
  • Objective: To quantitatively analyze the effect of nicotine on orthodontic tooth movement (OTM) and bone remodeling in rats using micro-computed tomography and tartrate-resistant acid phosphatase immunostaining. Methods: Thirty-nine adult male Sprague-Dawley rats were randomized into three groups: group A, 0.5 mL normal saline (n = 9, 3 per 3, 7, and 14 days); group B, 0.83 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days); and group C, 1.67 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days). Each animal received daily intraperitoneal injections of nicotine/saline from the day of insertion of identical 30-g orthodontic force delivery systems. A 5-mm nickel-titanium closed-coil spring was applied between the left maxillary first molar (M1) and the two splinted incisors. The rate of OTM and volumetric bone changes were measured using micro-computed tomography. Osteoclasts were counted on the mesial alveolar bone surface of the distobuccal root of M1. Six dependent outcome variables, including the intermolar distance, bone volume fraction, bone mineral density, trabecular thickness, trabecular volume, and osteoclast number, were summarized using simple descriptive statistics. Nonparametric Kruskal-Wallis tests were used to evaluate differences among groups at 3, 7, and 14 days of OTM. Results: All six dependent outcome variables showed no statistically significant among group-differences at 3, 7, and 14 days. Conclusions: The findings of this study suggest that nicotine does not affect OTM and bone remodeling, although fluctuations during the different stages of OTM in the nicotine groups should be elucidated in further prospective studies.