• Title/Summary/Keyword: cohesive models

검색결과 71건 처리시간 0.019초

Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment

  • Zhu, Sinan;Zhang, Chi;Yang, Zhigang;Wang, Chenchong
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1748-1751
    • /
    • 2017
  • Reduced activation ferritic/martensitic (RAFM) steels are widely applied as structural materials in the nuclear industry. To investigate hydrogen's effect on RAFM steels' elastic properties and the mechanism of that effect, a procedure of first principles simulation combined with experiment was designed. Density functional theory models were established to simulate RAFM steels' elastic status before and after hydrogen's insertion. Also, experiment was designed to measure the Young's modulus of RAFM steel samples with and without hydrogen charging. Both simulation and experiment showed that the solubility of hydrogen in RAFM steels would decrease the Young's modulus. The effect of hydrogen on RAFM steels' Young's modulus was more significant in water-quenched steels than it was in tempering steels. This indicated that defects inside martensite, considered to be hydrogen traps, could decrease the cohesive energy of the matrix and lead to a decrease of the Young's modulus after hydrogen insertion.

수지접합 수복물용 합금의 피착면처리에 따른 결합력에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE BOND STRENGTH OF ETCHED CAST RESTORATION USING DIFFERENT METAL SURFACE TREATMENTS)

  • 이근우
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.13-22
    • /
    • 1991
  • This study investigated the effects of surface treatment on the tensile bond strength of resinbonded prosthesis. The Rexillium III specimens were treated with $50{\mu}m\;Al_2O_3$ blasting. Type IV gold alloy specimens were treated with $400^{\circ}C$ heating and tin plating method. All specimens were bonded with MBAS composite resin cement and followed by immersion test into the $37^{\circ}C$ water bath for 7 days. The specimens were debonded in tension with an Instron machine and observed with SEM. The modes of failure were recorded also. The following conclusions were obtained : 1. The tensile bond strength decreased in following order. $50{\mu}m\;Al_2O_3$ basted Resillium III group, Type IV gold alloy group treated with $400^{\circ}C$ heat and tin plating type IV gold alloy group, and statistical significant differences were observed(p<0.05). 2. The tensile bond strength decreased in all groups after 7 days immersion test, but statistical significant differences were observed in Rexillium III specimens only. 3. The sharp and irregular surface were observed in Rexillium III, but $400^{\circ}C$ heat treated and tin plated groups had round and broad surface in SEM. 4. The models of bond failure were cohesive-adhesive failure mainly.

  • PDF

실내공간을 위한 기반 Syntax 접근성 분석 알고리즘 (Syntax-based Accessibility Analysis Algorithm for Indoor Spaces)

  • 김혜영;전철민
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2007년도 추계학술대회
    • /
    • pp.247-256
    • /
    • 2007
  • 접근성은 주로2차원 네트워크를 기반으로 도시나 교통문제 등에 적용되어왔다. 그러나 대규모 복합 건물들이 생겨나면서 접근성과 같은 계량적인 측정이 요구된다. 따라서 본 연구에서는 3차원 공간에서의 접근성을 산출하는 방법을 제안하고 기존의 전통적인 Space Syntax에서의 접근성 산출방법과 이를 3차원 공간 내에 적용하기 위한 새로운 방법을 제안한다. 본래 Space syntax는 거리나 시간과 같은 비용을 고려하지 않은 토폴로지 기반의 이론이지만,본 연구에서는 공간간 거리,층간 이동 등의 부하를 고려함으로써 공간의 깊이를 산출하였다. 개발된 방법은 캠퍼스 건물모델에 적용하여 비교 분석하였다.

  • PDF

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

정신질환자와 가족을 위한 회복적 가족서클 프로그램의 효과 (Effects of Restorative Family Circles on People with Mental Illness and Their Families)

  • 김효경;김현정;남경아
    • 한국보건간호학회지
    • /
    • 제37권1호
    • /
    • pp.111-124
    • /
    • 2023
  • Purpose: This study aimed to investigate the effects of restorative family circles (RFCs) on empowerment and family support for people with mental illness, and the belief system and caring experience of their families. Methods: This study used a quasi-experiment with a non-equivalent control group pretest-posttest non-synchronized design. Ninety-two dyads of patient-family caregivers were recruited using convenience sampling and assigned to the experimental and control groups. The subjects of the experimental group participated in RFCs consisting of eight 90-minute sessions. Data were collected at three different times (pretest, posttest, follow-up test) and analyzed for the effects of RFC using the 𝑥2 test, Fisher's exact test, Mann-Whitney U test for homogeneity between groups, and generalized estimating equation models. Results: The findings of this study showed that there were significant differences in the family support for people with mental illness between the pretest and follow-up test, and also in the belief system and caring experience of the family between the pretest and posttest. Conclusion: This study revealed that family interventions based on restorative justice emphasizing community-driven conflict management could be used in psychiatric mental health nursing care for fostering a cohesive family relationship.

에이전트기반 시뮬레이션을 활용한 건설프로젝트 조직 내 협업과정의 이해 (Understanding Collaborative Working Processes within Construction Project Teams Using Agent-Based Modeling and Simulation)

  • 손정욱;신승우;이준성
    • 한국건설관리학회논문집
    • /
    • 제15권1호
    • /
    • pp.70-77
    • /
    • 2014
  • 건설프로젝트의 성공적인 수행을 위해 의사소통, 협력, 정보공유 등을 포함한 구성원들 간의 협업은 반드시 필요하다. 그러나 프로젝트 조직 내의 협업과정이 성과에 미치는 영향에 대한 분석적인 시도는 부족하였다. 본 연구는 게임이론 기반의 에이전트기반 시뮬레이션을 활용하여 프로젝트 조직 내 협업과정을 보다 명시적으로 이해하는 방법을 제시하였다. 시뮬레이션의 결과로 구성원수준에서의 관계형성과 조직수준에서의 네트워크 발전양상을 관찰할 수 있었다. 본 연구는 프로젝트조직 내의 협업과정 분석방법 개발을 위한 기초연구이며, 향후 연구를 통해 조직 내 업무수행 프로세스, 생산작업 프로세스, 관리 프로세스 등의 부분과 결합하여 프로젝트 성과를 예측하는 방법으로 발전될 수 있을 것이다.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • 한국도로학회논문집
    • /
    • 제8권1호
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

키워드 네트워크 분석을 통한 지식구조 변화 연구 : 비즈니스 모델 연구를 중심으로 (A Study on the Change of Knowledge Structure through Keyword Network Analysis : Focus on Business Model Research)

  • 류재홍;최진호
    • 한국IT서비스학회지
    • /
    • 제17권2호
    • /
    • pp.143-163
    • /
    • 2018
  • The business models has a great impact on the successful management of enterprises. Business environment has been shifting from industrial economy to knowledge-based economy. Enterprises go through numerous trials for successful management in the changing environment. Along with trial tests, research areas have been growing simultaneously. Although many researches have been conducted with regard to business models, it is very insufficient to systematically analyze the knowledge flow of research. Accordingly, successive researchers who want to study the business model may find it difficult to establish the orientation of future application research based on understanding the process of changing the knowledge structure that have accumulated so far. This study is intended to determine the current state of the business model research and to understand the process of knowledge structure changes in keywords that appear in 2,667 business model articles in the SCOPUS database. Identifying the knowledge structure has been completed through social network analysis, a methodology based on the 'relationship', and the changes in the knowledge structure were identified by classifying them into four different periods. The analysis showed that, first, the number of business model co-author increases over time with the need for academic diversity. Second, the 'innovation' keyword has the biggest center in the network, and over time, the lower-rank keyword which was in the former period has emerged as the top-rank keyword. Third, the cohesiveness group decreased from 12 before 2000 to 5 in 2015 and also the modularity decreased as well. Finally, examining characteristics of study area through a cognitive map showed that the relationships between domains increased gradually over time. The study has provided a systematic basis for understanding the current state of the business model research and the process of changing knowledge structure. In addition, considering that no research has ever systematically analyzed the knowledge structure accumulated by individual researches, it is considered as a significant study.