• 제목/요약/키워드: cohesion and angle of internal friction

검색결과 163건 처리시간 0.028초

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

Experimental study on deformation and strength property of compacted loess

  • Mei, Yuan;Hu, Chang-Ming;Yuan, Yi-Li;Wang, Xue-Yan;Zhao, Nan
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.161-175
    • /
    • 2016
  • A series of experimental studies are conducted on the deformation and shear strength property of compacted loess. The results reveal that the relationships of both the initial moisture content (w) and the initial degree of compaction (K) of compacted loess with cohesion (w) and the angle of internal friction (${\varphi}$) are linear. The relationship between the secant modulus ($E_{soi}$) and K is also linear. The relationship between $E_{soi}$ and w can be fitted well by a second-order polynomial. Further, when the influences of w and K are ignored, the relationship between the confined compression strain (${\varepsilon}$) and vertical pressure (p) can be expressed by a formula. A correction formula for the deformation of compacted loess caused by a change in w and K is derived on the basis of the study results.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.

개별요소법을 이용한 핵석층의 물성 산정 : 화강암질 편마암 지역에 분포하는 핵석층의 예

  • 유승학;박영도;김기석;박현익;서영호;박연준
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.130-139
    • /
    • 2007
  • We have carried out numerical compression experiments to estimate the mechanical properties (Mohr-Coulomb and elastic) of corestone-bearing saprolites in Beolgyo area. The studied saprolite, consisting of mechanically much stronger corestone and weaker matrix, is a weathering product of the Precambrian granitic gneiss in the Youngnam massif. Since the saprolite consists of larger corestones with diameter up to 2m, it is impossible to directly measure the mechanical properties by physical experiments. We have measured the mechanical properties of corestone and matrix from naturally occurring saprolite and have used them as a reference for our numerical model. Then, we mixed each material and carried out biaxial compression tests while varying the volume percentage of corestones from 0 to 57%. We found that both cohesion and internal friction angle increase with the volume percentage of corestones while elastic modulus remains constant. We found the results from numerical experiments are in contradiction to what is known from physical experiments using artificial saprolites. This may be due to a possibility that the sharp and discrete nature of interface between corestone and matrix in physical experiments differs from the gradual interfacial nature in numerical modelling and natural saprolites.

  • PDF

링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구 (A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests)

  • 권준욱;김선명;윤지선
    • 한국지반공학회논문집
    • /
    • 제16권6호
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

위험도 분석에 근거한 최적 터널설계 사례 (A case study on the optimal tunnel design based on risk analysis)

  • 유광호
    • 한국터널지하공간학회 논문집
    • /
    • 제12권5호
    • /
    • pp.379-387
    • /
    • 2010
  • 본 논문에서는 고속국도 제 12호선 담양-성산간의 양방향 터널의 설계 시, 지반 물성치의 불확실성을 고려하기 위해 위험도 분석에 근거하여 최적의 지보패턴 및 굴착방법을 결정하는 사례를 소개하였다. 이를 위해 지보량과 굴착방법이 다른 3 가지 적용 안을 선정하고, 터널의 안정성을 정량화할 수 있는 개념인 안전율을 사용하여 각각의 경우에 대해 Monte Carlo simulation 기법을 사용하여 위험도를 구하였다. 이때 결과의 신뢰도를 높이기 위하여 정규분포를 만족하는 총 729가지 경우의 지반물성치 조합 (변형계수, 점착력, 내부마찰각)을 생성하여 사용하였다. 또한 터널의 발생변위 및 숏크리트 휨응력 분포를 비교 분석하여 터널의 안정성을 확인하였다.

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.

준설토-저회-폐타이어 혼합경량토의 전단 및 CBR 특성 (Shear and CBR Characteristics of Dredge Soil-Bottom Ash-Waste Tire Powder-Mixed Lightweight Soil)

  • 김윤태;강효섭
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.34-39
    • /
    • 2011
  • This study investigated the shear and CBR characteristics of dredge soil-bottom ash-waste tire powder-mixed lightweight soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared with various contents of waste tire powder ranging from 0 to 100% at 50% intervals by the weight of the dry dredged soil. Several series of triaxial compression tests and CBR tests were conducted. The shear strength characteristics of the lightweight soil were compared using two different shear tests (triaxial compression test and direct shear test). The experimental results indicated that the internal friction angle of the lightweight soil obtained by the direct shear tests was greater than that by the triaxial shear tests. However, the cohesion value obtained by the triaxial shear tests was greater than that by the direct shear tests. The CBR value of the lightweight soil decreased from 35% to 15% as waste tire powder content increased.