• Title/Summary/Keyword: coefficient of total resistance

Search Result 99, Processing Time 0.021 seconds

A Study on the Fire Risk for Self-regulating Heating Cable (정온전선의 화재 위험성에 관한 연구)

  • Jung Hyun Lee;Si Hyun Kim;Ye Jin Park;Sin Dong Kang;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.7-13
    • /
    • 2024
  • This study examines the physical characteristics of self-regulating heating cables caused by increased temperature and fire risk due to local degradation. A thermo hygrostat system, a convection dryer, a digital multimeter (Agilent 34465 A), NI DAQ, and the LabVIEW program were used to assess the physical properties in response to temperature fluctuations. As the temperature increases, the resistance of the self-regulating heating cable increases; however, when the critical point is exceeded, the resistance sharply decreases. A problem arises when the resistance value cannot return to its original state even though the temperature is lowered to the initial state. Moreover, when the ambient temperature rises while power is applied, the resistance value initially increases, and the flowing current decreases, maintaining a constant state. However, when the critical temperature is exceeded, the flowing current increases because of a rapid decrease in the resistance value, progressing to ignition. When the resistance value decreases because of the deterioration of one local area, the total resistance value becomes less than the initial resistance value. Therefore, the flowing current increases and an ignition problem occurs at one location where deterioration occurs. Despite the sustained flames and arcs resulting from the changes in the overall physical properties of the self-regulating heating cable and resistance variations due to local decline, the fire continued as the flowing current was lower than the operating current of the circuit breaker, failing to cut the power. In the case of self-regulating heating cables and heating wires, which are the leading causes of fires in winter, efforts are needed to ensure the need for periodic maintenance and the use of KS-certified products.

Evaporative Heat Transfer Characteristics of Droplet on Oxi-nitriding Surface (산질화 표면에서 액적의 증발열전달 특성)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • The present study aims to experimentally investigate the evaporative heat transfer characteristics of Oxi-nitriding SPCC surface. Moreover, the heat transfer coefficient was examined with respect to surface temperature during droplet evaporation. In fact, the nitriding surface showed significant enhancement for anticorrosion performance compared to bare SPCC surface but the thermal resistance also increased due to the formation of compound layer. From the experimental results, the evaporative behavior of sessile droplet on nitriding surface showed similar tendency with the bare surface. Total evaporation time of sessile droplet on the nitriding surface was delayed less than 5%. The difference in heat transfer coefficient increased with the surface temperature, and the maximum difference was estimated to be around 11% at $80^{\circ}C$ surface. Thus, this nitriding surface treatment method could be useful for seawater heat exchanger industries.

Screening and Histopathological Characterization of Korean Carrot Lines for Resistance to the Root-Knot Nematode Meloidogyne incognita

  • Seo, Yunhee;Park, Jiyeong;Kim, Yong Su;Park, Yong;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • In total, 170 carrot lines developed in Korea were screened for resistance to Meloidogyne incognita race 1 to select parental genetic resources useful for the development of nematode-resistant carrot cultivars. Using the gall index (GI), gall formation was examined on carrot roots inoculated with approximately 1,000 second-stage juveniles of the nematode 7 weeks after inoculation. Sixty-one carrot lines were resistant (GI ${\leq}1.0$), while the other 109 were susceptible (GI > 1.0) with coefficient of variance (CV) of GI for total carrot lines 0.68, indicating low-variation of GI within the lines examined. The histopathological responses of two carrot plants from resistant and susceptible lines were examined after nematode infection. In susceptible carrots, giant cells formed with no discernible necrosis around the infecting nematodes. In the resistant carrot line, however, no giant cells formed, although modified cells were observed with extensive formation of necrotic layers through their middle lamella and around the infecting nematodes. This suggested that these structural modifications were related to hypersensitive responses governed by the expression of true resistance genes. Therefore, the Korean carrot lines resistant to the nematode infection are potential genetic resources for the development of quality carrot cultivars resistant to M. incognita race 1.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

Effect of Ultrafiltration on the Clearance of Artificial Kidney Dialyzers (인공신장 투석기에서 Ultrafiltration이 Clearance에 미치는 영향)

  • Jang, Ho-Nam;Kim, Jin-Gon;Park, Han-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 1982
  • Solute transfer in artificial kidney dialyzers was analyzed using Kedem-Katcha- Isky's description on membrane transport. Mass transfer coefficient, K was deduced from the diffusive clearance of commercial hemodialyzers. It can to seen that Kd increases with the increase of blood flow rate, which means that there is substantial resistance in the blood phase for solute transport. Total clearance was estimated with the Werynski's formula. The increase in total clearance due to ultrafiltration was most significant for middle molecules like vitamin Bla, however that for smaller molecules such as urea and creatinine was minimal.

  • PDF

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

Wall-roughness effects of trapezoidal ribs on the flow of open channel (개수로 흐름에서 사다리꼴 돌출줄눈의 벽면조도 효과)

  • Shin, Seung Sook;Park, Sang Deog;Park, Ho Kook
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • The trapezoidal ribs had been installed in the retaining wall in order to reduce to flood damage in the impingement of mountain rivers. In this study, experiments in open channel with the trapezoidal ribs on sidewall were conducted to evaluate the effect of flow resistance by the trapezoidal shape. The hydraulic flow characteristics according to the flow rates were surveyed where the wall roughness is k-type that dimensionless spacings, ${\lambda}_{nv}$, are 6, 9, and 12. The flow-resistance factors such as roughness and friction coefficients increased generally with increase of the spacing of ribs. In high flow rate the friction coefficient showed the maximum value when ${\lambda}_{nv}$ is 9. Though the trapezoidal ribs has the relatively smaller flow resistance compared to the square ribs, their form drag accounted for mean 62% of the total flow resistance. It was confirmed that the optimal spacing of trapezoidal ribs to maximize the effect of flow resistance as the wall roughness increases are 9 to 12 times of the height of trapezoidal ribs.

The Lateral Current Force Coefficient in the Real Ship Towing Test (실선 예인실험을 통한 여객선형의 유압횡력계수 고찰)

  • Jung, Chang-Hyun;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.373-379
    • /
    • 2016
  • Hydraulic forces on a vessel are changed according to the depth/draft ratio (h/d) during berthing or towing in a lateral direction. It is well known that lateral current force coefficient is dependent on the kinds of vessel in question. However, not much research exists about the characteristics of general ships, except for oil tankers, as suggested by the Oil Companies International Marine Forum (OCIMF). In this paper, lateral current coefficient related to h/d is analyzed in comparison with theoretical values and experiments with a 93m passenger ship. The estimated total resistance on the ship was 14.0 tons under an h/d of 1.6 with a lateral current force coefficient of 1.9. This was found to be similar to the measured value of 13.8 tons on the towing line in actual experiments. Resistances on the ship under an h/d of 3.0 was calculated to be 19.9 tons with a lateral current force coefficient of 1.3. Therefore, the lateral current force coefficient was expected to be 1.3 under an h/d of 3.0, in experiments measured value 20.0 tons. And the discharging currents did not affect the towing force if the towing line was over 30 m, since the towing resistance showed a similar tendency for changes in line length from 30 m to 60 m.