• Title/Summary/Keyword: coefficient of effective viscosity

Search Result 23, Processing Time 0.181 seconds

Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

  • Kim, Ki-Taek;Kim, Min-Hwan;Park, Ju-Hwan;Lee, Jae-Young;Cho, Hyun-Jong;Yoon, In-Soo;Kim, Dae-Duk
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.512-523
    • /
    • 2018
  • Background: 20(S)-Protopanaxadiol (20S-PPD) is a fully deglycosylated ginsenoside metabolite and has potent dermal antiaging activity. However, because of its low aqueous solubility and large molecular size, a suitable formulation strategy is required to improve its solubility and skin permeability, thereby enhancing its skin deposition. Thus, we optimized microemulsion (ME)-based hydrogel (MEH) formulations for the topical delivery of 20S-PPD. Methods: MEs and MEHs were formulated and evaluated for their particle size distribution, morphology, drug loading capacity, and stability. Then, the deposition profiles of the selected 20S-PPD-loaded MEH formulation were studied using a hairless mouse skin model and Strat-M membrane as an artificial skin model. Results: A Carbopol-based MEH system of 20S-PPD was successfully prepared with a mean droplet size of 110 nm and narrow size distribution. The formulation was stable for 56 d, and its viscosity was high enough for its topical application. It significantly enhanced the in vitro and in vivo skin deposition of 20S-PPD with no influence on its systemic absorption in hairless mice. Notably, it was found that the Strat-M membrane provided skin deposition data well correlated to those obtained from the in vitro and in vivo mouse skin studies on 20S-PPD (correlation coefficient $r^2=0.929-0.947$). Conclusion: The MEH formulation developed in this study could serve as an effective topical delivery system for poorly soluble ginsenosides and their deglycosylated metabolites, including 20S-PPD.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

A Study on the Engineering Properties of Micro Fine Hybrid Silicate Grout Materials (마이크로 복합실리카 그라우트재의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Jin-Chun;Choi, Young-Chul;Jung, Jong-Ju;Yoon, Nam-Sik;Shin, Sang-Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.67-79
    • /
    • 2001
  • The objective of this study is to determine the engineering properties of micro fine hybrid silicate grout materials that were developed recently. In this study, MSG-N type was mainly used as grout materials, and the chemical components, grain size distribution, mineral characteristics were analyzed. Moreover, the properties of active silica and ordinary portland cement acting as coagulating agent were analyzed and compared with each other. To determine the engineering properties, the bleeding test, viscosity test, coagulation test, examination with naked eye, photographing by using SEM, uniaxial compression test and in-situ application test for reclaimed ground were carried out. A series of test results showed that the strength of micro fine hybrid silicate grout materials was about twice that of ordinary sodium silicate grout materials, and alkali leakage decreased dramatically when MSG method was utilized. Especially, based on the evaluation of the application of the MSG method to field, this method would be very effective in reducing coefficient of permeability due to its excelent permeability.

  • PDF