• Title/Summary/Keyword: codes provisions

Search Result 120, Processing Time 0.028 seconds

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (I) Proposal of Approach (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (I) 방법의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.425-436
    • /
    • 2014
  • Although the strut-tie model approaches of current design codes are regarded as the valuable methods for designs of structural concretes with D-regions, the approaches have to be improved because of the uncertainties in terms of the concepts and provisions for designs of 3-dimensional structural concretes. To improve the uncertainties, a new strut-tie model approach is proposed in this study. In the proposed approach, the concepts of employing a 3-dimensional grid element allowing load transfers in all directions at a node to construct a strut-tie model, a numerical analysis approach to determine the effective strengths of concrete struts and nodal zones by reflecting the effects of reinforcing bars and 3-dimensional stress state, and maximum areas of struts and ties to examine their load carrying capacities are integrated into the strut-tie model approaches of current design codes.

Overview of Seismic Loads and Application of Local Code Provisions for Tall Buildings in Baku, Azerbaijan

  • Choi, Hi Sun;Sze, James;Ihtiyar, Onur;Joseph, Leonard
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Baku, the capital of Azerbaijan, has seen a boom in construction in recent years. The old Baku city has been rapidly transforming into a new hub of high-rise buildings and lively cultural centers hosting the Euro Vision Song Contest in 2012 and European Games in 2015. A major population shift to Baku from its suburbs and the countryside has resulted in the doubling of Baku's population in the 4 years between 2009 and 2013. As of January 2013, Baku's population reached four million people, 43% of the citizens in Azerbaijan according to The State Statistical Committee of Azerbaijan. With this trend, the city needs more high-rise buildings to accommodate rapidly increasing demands for more housing and business space. Until the Azerbaijan Seismic Building Code was published in 2010 and became effective, many different seismic criteria, in terms of building codes and seismic intensities, were used for all new high-rise projects in Baku. Some designers used the SNIP (Russian) code with seismic level 9 or level 8 with 1 point penalty. Others used the Turkish code with Seismic Zone 1, UBC 97 with Zone 2 through 4, or IBC with Sa = 0.75 g through 1.0 g. The seismic intensity is now clarified with the Azerbaijan Seismic Building Code. However, the Azerbaijan Seismic Building Code is appropriate for low-rise buildings applications but may be inappropriate for high-rise project applications. This is because the code-defined response spectrum yields unrealistically conservative seismic forces for high-rise buildings with long periods, as compared to those determined by other internationally accepted building codes. This paper provides observations and recommendations for code-based seismic load assessment of high-rise buildings in the Baku area.

Effective stiffness in regular R/C frames subjected to seismic loads

  • Micelli, Francesco;Candido, Leandro;Leone, Marianovella;Aiello, Maria Antonietta
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.481-501
    • /
    • 2015
  • Current design codes and technical recommendations often provide rough indications on how to assess effective stiffness of Reinforced Concrete (R/C) frames subjected to seismic loads, which is a key factor when a linear analysis is performed. The Italian design code (NTC-2008), Eurocode 8 and ACI 318 do not take into account all the structural parameters affecting the effective stiffness and this may not be on the safe side when second-order $P-{\Delta}$ effects may occur. This paper presents a study on the factors influencing the effective stiffness of R/C beams, columns and walls under seismic forces. Five different approaches are adopted and analyzed in order to evaluate the effective stiffness of R/C members, in accordance with the scientific literature and the international design codes. Furthermore, the paper discusses the outcomes of a parametric analysis performed on an actual R/C building and analyses the main variables, namely reinforcement ratio, axial load ratio, concrete compressive strength, and type of shallow beams. The second-order effects are investigated and the resulting displacements related to the Damage Limit State (DLS) under seismic loads are discussed. Although the effective stiffness increases with steel ratio, the analytical results show that the limit of 50% of the initial stiffness turns out to be the upper bound for small values of axial-load ratio, rather than a lower bound as indicated by both Italian NTC-2008 and EC8. As a result, in some cases the current Italian and European provisions tend to underestimate second-order $P-{\Delta}$ effects, when the DLS is investigated under seismic loading.

A Study on Reliability Based Design Criteria for Reinforced Concrete Bridge Superstructures (철근(鐵筋)콘크리트 도로교(道路橋) 상부구조(上部構造) 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.87-99
    • /
    • 1982
  • This study proposes a reliability based design criteria for the R.C. superstructures of highway bridges. Uncertainties associated with the resistance of T or rectangular sections are investigated, and a set of appropriate uncertainties associated with the bridge dead and traffic live loads are proposed by reflecting our level of practice. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM(Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Ellingwood's algorithm and an approximate log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the current R.C. bridge design safety provisions. A set of load and resistance factors is derived by the proposed uncertainties and the methods corresponding to the target reliability. Furthermore, a set of nominal safety factors and allowable stresses are proposed for the current W.S.D. design provisions. It may be asserted that the proposed L.R.F.D. reliability based design criteria for the R.C. highway bridges may have to be incorporated into the current R.C. bridge design codes as a design provision corresponding to the U.S.D. provisions of the current R.C. design code.

  • PDF

Experimental investigation of existing R/C frames strengthened by high dissipation steel link elements

  • Karalis, Apostolos A.;Stylianidis, Kosmas C.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • This paper presents the results of an experimental program concerning the efficiency of a specific strengthening technique which utilizes a small steel link element connected to the R/C frame through bracing elements. Brittle types of failure, especially at the connections between steel and concrete elements, can be avoided by appropriate design of the local details. Five single storey one bay R/C frames scaled 1:3 were constructed according to older codes with substandard details. The first one was a typical bare reference frame. The other four were identical to the first one, strengthened by steel bracing elements. The behavior of the strengthened frames is described with respect to the reference bare frame. The concrete frames were constructed according to older code provisions by the use of smooth steel bars, low strength concrete, sparsely spaced stirrups and substandard details. The strengthening scheme aimed to the increase of both strength and deformation capacity of the original R/C frame. The inelastic deformations are purposely concentrated to a short steel link element connecting the steel bracing to the R/C frame. The results show that the steel link element can increase considerably the strength and the energy dissipation capacity of the frame.

Punching Shear Strength of Prestressed Precast Concrete Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량바닥판의 펀칭전단강도)

  • 정철헌;류형근;정운용;김인규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.653-659
    • /
    • 2002
  • Recently, the failure case of the bridge deck slabs have been increasing in Korea and it was observed that the failure modes of most deck slabs collapsed were not caused by flexural moment but by local punching shear. The main reason of the failures was the punching shear failure of deck slabs under heavy truck traffics. This paper presents test results obtained from punching shear tests performed on prestressed precast deck specimens. Cracking patterns, failure modes, deflections, and stresses are included as well as discussion of the punching shear strength observed during punching shear tests. Static lest specimens had punching shear failures at loads much higher than predicted by the current codes. Tests results indicate that current code provisions appear to be conservative.

A study on the Means of Egress Codes for Interior Architecture in the United States - Focused on Evacuation Elements in the Interior Architectural Design - (미국의 실내건축 피난 규정에 관한 연구 - 실내건축계획에 있어 피난 요소를 중심으로 -)

  • Kim, Young-Sung;Cho, Sung-O
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.3
    • /
    • pp.24-32
    • /
    • 2018
  • The law reflects the situation of the times, understands the society, and shows the will of the state and the community. The Means of Egress should be maintained from design to construction, supervision, as well as use, in order to protect the lives and property of the residents as well as the safe use of the facilities. However, Interior Architects are think that evacuation and safety regulations are complex elements that change frequently and may inhibit the idea of design. The purpose of this study is to propose a design method for the use of safe facilities in the interior architectural design on the evacuation regulations affecting the actual design by the IBC(the International Building Code) and NFPA(National Fire Protection Association) LSC (Life Safety Code). The research method is to investigate and analyze the provisions related to the evacuation of interior architecture in the US and to understand the current regulations and the evacuation regulations. We suggest to design method to the details of the hallway, corridors, aisle accessway, door way, exit path, In particular, the design of furniture, tables and chairs layout that could be obstacles to evacuation situations is presented.

Are theoretically calculated periods of vibration for skeletal structures error-free?

  • Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.17-35
    • /
    • 2012
  • Simplified equations for fundamental period of vibration of skeletal structures provided by most seismic design provisions suffer from the absence of any associated confidence levels and of any reference to their empirical basis. Therefore, such equations may typically give a sector of designers the false impression of yielding a fairly accurate value of the period of vibration. This paper, although not addressing simplified codes equations, introduces a set of mathematical equations utilizing the theory of error propagation and First-Order Second-Moment (FOSM) techniques to determine bounds on the relative error in theoretically calculated fundamental period of vibration of skeletal structures. In a complementary step, and for verification purposes, Monte Carlo simulation technique has been also applied. The latter, despite involving larger computational effort, is expected to provide more precise estimates than FOSM methods. Studies of parametric uncertainties applied to reinforced concrete frame bents - potentially idealized as SDOF systems - are conducted demonstrating the effect of randomness and uncertainty of various relevant properties, shaping both mass and stiffness, on the variance (i.e. relative error) in the estimated period of vibration. Correlation between mass and stiffness parameters - regarded as random variables - is also thoroughly discussed. According to achieved results, a relative error in the period of vibration in the order of 19% for new designs/constructions and of about 25% for existing structures for assessment purposes - and even climbing up to about 36% in some special applications and/or circumstances - is acknowledged when adopting estimates gathered from the literature for relative errors in the relevant random input variables.

Performance Based Seismic Design - State of Practice 2012 in the United States of America

  • Klemencic, Ron;Fry, J. Andrew;Hooper, John;Baxter, Robert;Morgen, Brian;Solberg, Kevin;Zaleski, Krzysztof
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.149-154
    • /
    • 2012
  • This paper presents a summary of the state of the practice for Performance Based Seismic Design (PBSD) in the United States. While it is not included in the prescriptive provisions of the United States' building codes, the PBSD procedure has been successfully implemented for two decades. The recent publication of the Guidelines for Performance-Based Seismic Design of Tall Buildings by the Pacific Earthquake Engineering Research Center (PEER) illustrates the fact that the engineering community has embraced this procedure and provides a thoughtful set of recommendations to building designers who intend to implement PBSD. The key parameters currently required for a PBSD also are outlined, such as seismic hazard definition, modeling procedures, and acceptance criteria. These Guidelines will serve as the basis for many PBSD projects in the coming years and as such are a common reference used throughout this paper. Finally, a brief summation of recent PBSD projects in the United States is presented.

Seismic Response of Exterior Beam-Column Subassemblies Using Normal and High-Strength Materials (일반강도 및 고강도 재료를 사용한 보-기둥 접합부의 지진응답)

  • 장극관;서대원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.83-94
    • /
    • 1999
  • High-strength concrete has demonstrated characteristics of both increased strength and enhanced durability; hence its use has become more and more widespread. But, due to the lack of experimental evidance on the seismic performance of frame members constructed with high-strength concrete, the current codes of their design provisions are based on normal concrete test. The purpose of this study is to compare the response of the high-strength concrete beam-column-slab subassemblies with the response of a normal-strength concrete specimens. Four assemblies $(f_c'=240kg/\textrm{cm}^2, f_c'=700kg/\textrm{cm}^2)$ with 2/3 scale were designed and tested to investigate seismic behavior.

  • PDF