• 제목/요약/키워드: code validation

검색결과 456건 처리시간 0.025초

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

상륙돌격장갑차의 진수 중 동적 거동 수치 해석 (Numerical Analysis on Dynamic Behavior Characteristics of an Amphibious Assault Vehicle during Water Entry)

  • 허영민;김태형
    • 한국군사과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.159-170
    • /
    • 2023
  • In the present study, the dynamic behavior characteristics of an amphibious assault vehicle during water entry were analyzed using STAR-CCM+, a commercial computational fluid dynamics(CFD) code. All computations were performed using an overset mesh system and a RANS based flow-solver coupled with dynamic fluid-body interaction(DFBI) solver for simulating three degrees of freedom motion. For numerical validation of the solver, a water entry simulation of inclined circular cylinder was conducted and it was compared between an existing experiment data and CFD results. The pitch angle variation and the trajectory of the circular cylinder during water entry shows good agreement with previous experimental and numerical studies. For the water entry simulations of the amphibious assault vehicle, the analysis of dynamic behaviors of the amphibious assault vehicle with different slope angles, submerged depths and initial velocities were conducted. It is confirmed that the steep slope angle increases the submerged volume of the amphibious assault vehicle, so the buoyancy acting on the vehicle is increased and the moved distance for the re-flotation is decreased. It is also revealed that the submerged volume is increased, bow-up phenomenon occur earlier.

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Metric based Performance Measurement of Software Development Methodologies from Traditional to DevOps Automation Culture

  • Poonam Narang;Pooja Mittal
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.107-114
    • /
    • 2023
  • Successful implementations of DevOps practices significantly improvise software efficiency, collaboration and security. Most of the organizations are adopting DevOps for faster and quality software delivery. DevOps brings development and operation teams together to overcome all kind of communication gaps responsible for software failures. It relies on different sets of alternative tools to automate the tasks of continuous integration, testing, delivery, deployment and monitoring. Although DevOps is followed for being very reliable and responsible environment for quality software delivery yet it lacks many quantifiable aspects to prove it on the top of other traditional and agile development methods. This research evaluates quantitative performance of DevOps and traditional/ agile development methods based on software metrics. This research includes three sample projects or code repositories to quantify the results and for DevOps integrated selective tool chain; current research considers our earlier proposed and implemented DevOps hybrid model of integrated automation tools. For result discussion and validation, tabular and graphical comparisons have also been included to retrieve best performer model. This comparative and evaluative research will be of much advantage to our young researchers/ students to get well versed with automotive environment of DevOps, latest emerging buzzword of development industries.

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo ;Dario M. Godino ;Alirio J. Sarache Pina;Norberto M. Nigro ;Damian E. Ramajo
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1911-1923
    • /
    • 2023
  • The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

태풍 시뮬레이션을 통한 서남해안의 극한풍속 예측 (Estimation of Extreme Wind Speeds in Southern and Western Coasts by Typhoon Simulation)

  • 권순덕;이재형
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.431-438
    • /
    • 2008
  • 본 연구에서는 열대성 저기압에 의하여 지배를 받는 우리나라 서남해안의 풍속을 추정하기 위한 개선된 태풍 몬테카를로 시뮬레이션 방법을 제시하였다. 이를 위하여 적절한 태풍의 물리적 모델을 제시하고 실측치와 비교하여 검증하였다. 아울러 태풍을 구성하는 파라메터의 확률분포 모델을 제시하고 우리나라 인근을 통과한 태풍자료를 사용하여 적합성을 검사하였다. 본 연구의 방법으로 서남해안 주요 지점의 재현기간별 풍속을 추정하여 제시하였는데, 위도가 낮아질수록 풍속이 높아지며, 도로교설계기준의 기본풍속은 과다한 것으로 나타났다.

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.21-39
    • /
    • 2022
  • In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na;Nak-Hyun Kim;Chang-Gyu Park;Jong-Bum Kim;Il-Kwon Oh
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3571-3580
    • /
    • 2023
  • The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

국내 건축물 지진피해 위험도의 지역단위 평가 (Regional Seismic Risk Assessment for Structural Damage to Buildings in Korea)

  • 안숙진;박지훈;김혜원
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.265-273
    • /
    • 2023
  • This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.