• Title/Summary/Keyword: code formula

Search Result 175, Processing Time 0.027 seconds

Application of Wind Heeling Moment with Wind Tunnel Test (Wind Tunnel Test를 통한 Wind Moment의 적용 사례)

  • Kim, Jin-ho;Lee, Sang-yeol;Park, Se-il;Kim, Yang-soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.74-78
    • /
    • 2015
  • When floating platform or drilling unit is located at operating station during its design life, it has to have the sufficient stability considering external environment. To evaluate whether offshore structure is complied with the required design criteria for intact stability, the factors which decrease the righting moment have to be considered. Wind heeling moment is one of main factors because the direction is opposite to the righting moment. According to 2009 MODU CODE (Code for the construction and equipment of Mobile Offshore Drilling Units, 2009), wind heeling moment derived from wind tunnel test on scale model of offshore structure enables to apply as alternative given formula and method in 2009 MODU CODE. However, there is no the specific method for applying data derived from wind tunnel test. Based on the following reasons, this paper presents that the calculation method of wind heeling moment utilizing non-dimensional coefficient relative to wind loads (wind forces and moments) and the comparison with each method applying an example.

  • PDF

Efficient Prediction of Aerodynamic Heating of a High Speed Aircraft for IR Signature Analysis (적외선 신호 분석을 위한 고속 항공기의 공력가열에 관한 효율적 예측)

  • Lee, Ji-Hyun;Chae, Jun-Hyeok;Ha, Nam-Koo;Kim, Dong-Geon;Jang, Hyun-Sung;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.768-778
    • /
    • 2019
  • The ability to calculate aerodynamic heating and surface temperature is essential to ensure proper design of aircraft components in high speed flight. In this study, various empirical formulas for efficiently calculating aerodynamic heating of aircraft were first analyzed. A simple computational code based on empirical formulas was developed and then compared with commercial codes; ANSYS FLUENT based on the Navier-Stokes-Fourier equation, and ThermoAnalytics MUSES based on an empirical formula. The code was found to agree well with the results of FLUENT in the wall and stagnation point temperatures. It also showed excellent agreement with MUSES, within 1% and 5% in temperature and heat flux, respectively.

Analysis of the Effect of Solar Radiation on Internal Temperature Distribution in Concrete Mat Foundation (태양 복사열이 콘크리트 매트기초의 내부 온도분포에 미치는 영향에 관한 해석적 연구)

  • Song, Chung Hyun;Lee, Chang Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • This research investigated the effect of solar radiation on the temperature distribution in concrete mat foundation. Zhang and Huang Model was utilized to estimate solar radiation heat at a given date and time. A one-dimensional finite element formula was derived with the fundamental laws of heat transfer and Galerkin method. Based on the formula, a one dimensional finite element analysis code was developed using MATLAB. Hydration heat analysis of mat foundation were conducted using the developed code. It was found that the solar radiation reduced the maximum temperature difference in mat foundation, and this temperature difference reduction was more prominent in case of summer season cast, a higher initial concrete temperature, and a thicker mat foundation depth. The research recommended that the solar radiation should be considered in hydration heat analysis of concrete mat foundation so as not to overestimate the maximum temperature difference in mat foundation.

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

A Study on the Applicability of Bearing Capacity Formulas of Driven Pile by Comparison with the Results of Static Loading Tests (정재하시험 결과를 통한 타입말뚝 지지력 공식의 타당성 분석)

  • Chun, Byung-Sik;Lee, Seung-Beom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.544-551
    • /
    • 2004
  • Piles are structural elements made of steel, concrete or timber, and utilize as pile foundation which is one of deep foundations. Driven pile among them, which drives pile into the ground, is fast-constructable, less expensive and it supplies much bearing capacity. For these reasons, its demand is steady. In this study, by selecting the cases which reached ultimate failure during in-situ static loading tests, bearing capacities acquired from these tests were compared with those computed by existing theories and formula. As the results of the analysis, ultimate bearing capacity computed by theoretic formula were less or similar to those of test results in most cases, but lower ground water level and more dense layer where end of piles were reached remarkably high bearing capacity in theoretical methods. ${\beta}-method$ and Korean structure foundation design standard were sensitive to ground physical properties. Meyerhof metbod and API code were relatively independent from site condition.

  • PDF

COMPUTATIONAL DETERMINATION OF NEUTRON DOSE EQUIVALENT LEVEL AT THE MAZE ENTRANCE OF A MEDICAL ACCELERATOR FACILITY

  • Kim, Hong-Suk;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • An empirical formula fur the neutron dose equivalent at the maze entrance of medical accelerator treatment rooms was derived on the basis of a Monte Carlo simulation. The simulated neutron dose equivalents around the Varian medical accelerator by the MCNPX code were employed. Two cases of target rotational planes were considered: parallel and perpendicular to maze walls. Most of the maximum neutron dose equivalents at the doorway were found when the target rotational planes were parallel to maze walls and the beams were directed to the inner maze entrances. The neutron dose equivalents at the outer maze entrances were calculated for about 698 medical accelerator facilities which were generated from the geometry configurations of running treatment rooms, based on such gantry rotation that produces the maximum neutron dose at the doorway. The results calculated with the empirical formula in this study were compared with those calculated by the Kersey method for 7 operating facilities. It was found that the maximum disagreement between the calculation of this study and that of the Kersey method was a factor of 8.54 with the value calculated by the Kersey method exceeding that of this study. It was concluded that the kersey method estimated the neutron dose equivalent at the doorway computed by MCNPX more conservatively than this study technique.

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Energy Loss Coefficient of Waves Considering Thickness of Perforated Wall (유공벽의 두께를 고려한 파의 에너지손실계수)

  • Yoon, Sung-Bum;Lee, Jong-In;Nam, Doo-Hyun;Kim, Seon-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • In the present study extensisve numerical experiments are conducted using the CFD code, FLUENT, to investigate the energy dissipation due to perforated walls for various wall-thickness and flow conditions. A new empirical formula for energy loss coefficient considering the effect of the thickness of perforated wall is obtained based on the results of computational experiments. It is found that the energy loss coefficient decreases as the wall-thickness increases and the maximum coefficient reduction reaches upto 40% of the value calculated using the conventional formulas for the sharp-crested orifice. To check the validity of the new formula the reflection coefficient of waves due to perforated wall is evaluated and compared with the results of existing theories and hydraulic experiments. The result shows that the new formula is superior to the conventional ones.

Analytical Methods of Leakage Rate Estimation from a Containment tinder a LOCA (냉각수상실 사고시 격납용기로부터 누출되는 유체유량 추산을 위한 해석적 방법)

  • Moon-Hyun Chun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.121-129
    • /
    • 1981
  • Three most outstanding maximum flow rate formulas are identified from many existing models. Outlines of the three limiting mass flow rate models are given along with computational procedures to estimate approximate amount of fission products released from a containment to environment for a given characteristic hole size for containment-isolation failure and containment pressure and temperature under a loss of coolant accident. Sample calculations are performed using the critical ideal gas flow rate model and the Moody's graphs for the maximum two-phase flow rates, and the results are compared with the values obtained from the mass leakage rate formula of CONTEMPT-LT code for converging nozzle and sonic flow. It is shown that the critical ideal gas flow rate formula gives almost comparable results as one can obtain from the Moody's model. It is also found that a more conservative approach to estimate leakage rate from a containment under a LOCA is to use the maximum ideal gas flow rate equation rather than tile mass leakage rate formula of CONTEMPT-LT.

  • PDF