• Title/Summary/Keyword: cobalt ferrite

Search Result 51, Processing Time 0.027 seconds

Effects of Co/Fe Sulfate Pigments on the Colour and Phase of Porcelain (Co/Fe 황화물의 혼합안료에 의한 도자기 표면의 상형성과 색변화)

  • Kim, Nam-Heun;Shin, Dae-Yong;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.354-360
    • /
    • 2022
  • In this study, an Co/Fe coated porcelain using a cobalt and ferrous sulfate was sintered at 1,250 ℃. The specimens were investigated by HR-XRD, FE-SEM (EDS), Dilatometer, and UV-vis spectrophotometer. The surface of the porcelain was uniformly fused with the pigment, and white ware and celadon body specimens were densely fused to a certain thickness from the surface. Other new compounds were produced by the chemical reaction of cobalt/ferrous sulfate with the porcelain body during the sintering process. These compounds were identified as cobalt ferrite spinel phases for white ware and white mixed ware, and an andradite phase for the celadon body, and the amorphous phase, respectively. As for the color of the specimens coated with cobalt and ferrous mixed pigments, it was found that the L* value was greatly affected by the white ware, and the a* and b* values were significantly changed in the celadon body. The L* values of the specimens fired with pure white ware, celadon body, and white mix ware were 72.1, 60.92, 82.34, respectively. The C7F3 pigment coated porcelain fired at 1,250 ℃ had L* values of 39.91, 50.17, and 40.53 for the white ware, celadon body, and white mixed ware, respectively; with a* values of -1.07, -2.04, and -0.19, and at b* values of 0.46 and 6.01, it was found to be 4.03. As a new cobalt ferrite spinel phase was formed, it seemed to have had a great influence on the color change of the ceramic surface.

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

Crystallographic and Magnetic Properties of Nanocrystalline Cobalt Ferrite Particles

  • Yangkyu Ahn;Eun Jung Choi;Sehun Kim
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.303-305
    • /
    • 1999
  • Ultrafine cobalt ferrite particles have been synthesized using a microemulsion method. All peaks of X-ray diffranction patterns are fairly broad but correspond to a cubic spinel structure with the lattice constant 8.39$\AA$. The coercivity measureed at 5K is 15.1 kOe. The maximal magnetization measured at 5 and 300 K are 13.2 and 10.7 emu/g, respectively. The particles behave ferrimagnetically at 5 K but superparamagnetically at 300K. Superparamagnetic behavior of the particles at room temperature was confirmed by the conincidence of the M vs. H/T at different temperatures and the Mossbauer spectrum.

  • PDF

Synthesis and Characterization of CoFe2O4/SiO2 using Cobalt Precursors from Recycling Waste Cemented Carbide (폐 초경합금에서 추출된 Co를 이용한 CoFe2O4/SiO2 합성 및 특성평가)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.454-457
    • /
    • 2011
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$, particles using recycled $Co_3O_4$ and their surface coating with silica using micro emulsion method. Firstly, the $Co_3O_4$ powders were separated from waste cemented carbide with acid-base chemical treatment. The cobalt ferrite nanoparticles with the size 10 nm are prepared by thermal decomposition method using recycled $Co_3O_4$. $SiO_2$ was coated onto the $CoFe_2O_4$ particles by the micro-emulsion method. The $SiO_2$-coated $CoFe_2O_4$ particles were studied their physical properties and characterized by X-ray diffraction (XRD), high resolution-transmission electron microscopy (TEM) analysis and CIE Lab value.

Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites

  • Chae, Kwang Pyo;Choi, Won-Ok;Kang, Byung-Sub;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • The crystallographic and magnetic properties of gallium-substituted cobalt ferrite ($CoGa_xFe_{2-x}O_4$) were investigated. The new material was synthesized using conventional ceramic methods, with gallium substituted for ferrite in the range of x = 0.0 to 1.0, in steps of 0.2. X-ray diffraction and M$\ddot{o}$ssbauer spectroscopy were used to confirm the presence of crystallized particles in the $CoGa_xFe_{2-x}O_4$ ferrite powders. All of the samples exhibited a single phase with a spinel structure, and the lattice parameters decreased as the gallium content increased. The particle size of the samples also decreased as gallium increased. For $x{\leq}0.4$, the M$\ddot{o}$ssbauer spectra of $CoGa_xFe_{2-x}O_4$ could be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites. However, for $x{\geq}0.6$, the M$\ddot{o}$ssbauer spectra could be fitted with two Zeeman sextets and one doublet. The variation in the M$\ddot{o}$ssbauer parameters and the absorption area ratio indicated a cation distribution of $(Co_{0.2-0.2x}Ga_xFe_{0.8-0.6x})[Co_{0.8+0.2x}Fe_{1.2-0.4x}]O_4$, and the magnetic behavior of the samples suggested that the increase in gallium content led to a decrease in the saturation magnetization and in the coercivity.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF