• Title/Summary/Keyword: coaxial alignment

Search Result 4, Processing Time 0.019 seconds

A study on the chucking alignment error analysis in coaxial grinding of ferrule (페룰 동축연삭시 척킹 오차 해석)

  • 김동길;김영태;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.9-14
    • /
    • 2002
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle hales which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center pins alone do not affect the rotation accuracy of ferrule. The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle in the case of a fixed alignment errors

  • PDF

A study on the chucking system in coaxial grinding of ferrule (페룰 동축 연삭시 척킹 시스템에 관한 연구)

  • Kim, Dong-Kil;Lee, Sang-Jo;Ahn, Geon-Jun;Kwak, Chol-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.987-991
    • /
    • 2003
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle holes which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle. The relationship between center pins displacement in coaxial grinding and grinding accuracy was explained.

  • PDF

A Study on the Chucking of Ferrule using Cone-type Centers and Ball-type Centers in Co-Axial Grinding - Chucking Error Analysis (원추형 센터와 볼형 센터를 이용한 페룰 동축 연삭시 척킹에 관한 연구-척킹 오차 해석)

  • 김동길;박성준;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.40-49
    • /
    • 2003
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications. the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin. pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule centers are investigated in the case where the ferrule is chucked with the cone-shaped center pins and bail centers, With homogeneous coordinate transformation and numerical analysis, the obtained results are as follows: In the case of cone-type center, the alignment errors between center pins alone do not affect the rotation accuracy of ferrule. The alignment errors between center holes cause sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers is proportional to the center pin angle. In the case of ball-type center, the displacements of ferrule centers has similar pattern as cone-type center, and the alignment errors art proportional to ball diameters.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF