• Title/Summary/Keyword: coating weight

Search Result 449, Processing Time 0.024 seconds

A Study of the Pack Cemented SiC Coating on Graphite by Experimental Design (흑연의 내산화성 증진을 위한 실험 계획법에 따른 탄화규소 코팅에 관한 연구)

  • 서임춘;리원준;예병한;박종욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.785-790
    • /
    • 1992
  • A study of the pack cemcented SiC coating on graphite was performed and the process conditions were evaluated by means of experimental design. The content of Si, P2O5, B and Al2O3 reaction temperature, reaction time and acid treatment wast tested as the experimental variables. The results were analyzed and compared by the characteristic value of 10% weight loss by oxidation. The acid treatment exhibited the most effective anti-oxidation property and the optimum conditions were the powder composition of 20% Si, 3% B and 77% SiC, the reaction temperature of 1550$^{\circ}C$ for 7 hours with phosphoric acid treatment. The pack coating performed under this condition improved the 10% weight loss oxidation temperature by 514$^{\circ}C$ compared to the bare graphite.

  • PDF

Performance of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet as Automotive Body Material

  • Shimizu, Takeshi;Asada, Hiroshi;Morikawa, Shigeru
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.74-80
    • /
    • 2010
  • For the purpose of applying a hot-dip Zn-6mass%Al-3mass%Mg alloy coated steel sheet (ZAM) to automotive body materials, a laboratory study of the general properties required for inner and outer panels of automotive bodies was performed. Even with only light coating weight, ZAM showed an excellent corrosion resistance in terms of both cosmetic and perforation corrosion compared to the currently used materials for automotive bodies, GI70 and GA45. In our study, it was confirmed that ZAM exhibits as good as or better properties than GI70 in terms of spot weldability and press formability. Furthermore, since the same corrosion resistance can be achieved with less coating weight by applying ZAM, laser weldability is better than GI and GA.

Effect of Nickel Addition in Hot Dip Galvanizing of Mini-mill Steels Containing Silicon (실리콘을 함유한 미니밀 소재의 용융아연도금성에 미치는 니켈첨가의 영향)

  • Lee, H.J.;Kim, J.S.;Chung, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • In this study the effect of nickel addition on the coating weight of mini-mill steels containing silicon has been studied. It is shown that the pure zinc accelerated growth of the alloy layers occurred by a rapid growth of the zeta phase at 0.06%Si. The addition of 0.06%Ni to a pure zinc bath was found to be very effective in reducing the coating weight and promoting preferential development of the delta phase. The coating obtained by immersion in the Zn-Ni bath shows the presence of a nickel-rich region between the zeta phase and the eta phase. It is suggested that nickel prevents the rapid growth of the zeta phase due to the formation of the Zn-Ni-Fe ternary compound, which may act as a barrier to inward diffusion of zinc or iron at the zeta-eta boundary.

  • PDF

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

A study on the Water Retention of Coating Colors(IV)-Synthesis of Alkali Sensitive Water Retention and Rheology Modifiers- (도공액의 보수성에 관한연구(제4보)- 알칼리 반응형 보수.유동성 개량제의 합성 -)

  • 이용규;엄기용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • Natural water-soluble polymers such as starch, casein and carboxy methyl cellulose(CMC) have been limited in their uses. However, the proper water retention of coating colors can not be obtained without addition of these polymers. Furthermore, the coating runnability and the physical properties of coated paper were not also satisfied. Therefore, the objective of this study was to synthesize the water retention and flow modifiers which can improve the water retention and flow properties of coating colors. We have measured physical properties of flow modifiers and coating colors which included flow modifiers. The viscosity of flow modifiers was very low at acid pH, and rapidly increased at about pH 7, and gradually reached to equilibrium at alkali pH. Such an increase comes from the molecular weight of flow modifiers and the amount of acrylic and methacrylic acids. The viscosity of coating color containing the flow modifiers was lower than that containing CMC. However, both of them had little difference in water retention. The water-phase viscosity of synthetic modifier containing coating color was either higher or similar compared to that of CMC containing coating color. The high shear viscosity of coating colors was low. Therefore, it can be concluded that the synthetic flow modifiers are very useful for improvement of flow properties and water retentions.

  • PDF

A Study on the Erosion-Corrosion of Sprayed Cu-Ni Alloy Coating in the Marine Environment (해양환경 중에서 Cu-Ni 용사피복재의 침식-부식에 관한 연구)

  • Lee, Sang-Yoel;Lim, Uh-Joh;Yun, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Thermal sprayed Cu-Ni alloy coating on the carbon steel was carried out impingement erosion-corrosion test and electrochemical corrosion test in the marine environment. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Cu-Ni coating was investigated, and the corrosion control efficiency of Cu-Ni coating to substrate was estimated quantitatively. Main results obtained are as follows : 1) The weight loss rate of Cu-Ni coating layer by the impingement erosion-corrosion compared with substrate was smaller in high specific resistance solution than in low specific resistance solution. 2) The corrosion potential of Cu-Ni coating layer spray coating in the marine environment became more noble than that of substrate. 3) With the lapse of time, corrosion current density of Cu-Ni coating layer became stable, but that of substrate was increased. 4) As the corrosion control efficiency of Cu-Ni coating layer in the marine environment was over 90%, its anti-corrosion characteristics was excellent.

  • PDF

Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating (졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성)

  • Lee Man Sig;Lee Sun-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

Abrasion of abutment screw coated with TiN

  • Jung, Seok-Won;Son, Mee-Kyoung;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.102-106
    • /
    • 2009
  • STATEMENT OF PROBLEM. Screw loosening has been a common complication and still reported frequently. PURPOSE. The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS. Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly mounted in liquid unsaturated poly-esther with dental surveyor. After 20 times of repeated closing and opening test, the evaluation for the change of inner surface of implant and TiN-coated abutment screw, and weight loss were measured. Mann-Whitney test with SPSS statistical software for Window was applied to analyze the measurement of weight loss. RESULTS. TiN-coated abutment screws of Osstem and 3i showed lesser loss of weight than non-coated those of Osstem and 3i (P < .05, Mann-Whitney test). CONCLUSION. Conclusively, TiN coating of abutment screw showed better resistance to abrasion than titanium abutment screw. It was concluded that TiN coating of abutment screw would reduce the loss of preload with good abrasion resistance and low coefficient of friction, and help to maintain screw joint stability.

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

EIS Properties of Lightweght Aggregate According to Surface Coating (표면 코팅 유무에 따른 경량골재의 EIS 특징)

  • Pyeon, Myeong-Jang;Jeong, Su-Mi;Kim, Ju-Sung;Kim, Ho-Jin;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.107-108
    • /
    • 2022
  • In recent years, the construction industry has a tendency to increase of high-rise builidngs. High rise buildings can use limited space efficiently. But High rise buildings have problem that have extremely heavy weight. Various studies are being conducted to reduce the weight of buildings. Although lightweight aggregate is a meterial that can effectively reduce the weight of buildings, the strength of the aggregate itself is weak and the absorption rate is high, so the strength of the ITZ(Interfacial Transition Zone) area is weak. Therefore, it is essential to improve the interfacial area when using lightweight aggregates. In this study, an experiment was conducted to improve the adhesion between the aggregate and cement paste and to strengthen the interfacial area by coating the surface of the lighteight aggregate with Blast Furnace Slag. To confirm the improvement, compressive strength and EIS(Electrochemical Impedance Spectroscopy) measurements were perfromed. Using EIS, the change in electrical resistance of the cement hardened body was confirmed. As a result, it was confirmed that the lightweight aggregate coated on the surface showed highter compressive strength and electrical resistance than the non-coated lightweight aggregate, and that the coating material was filled in the interfacial area and inside the aggregate that helped to strengthen the compresssive strength and higher electrical resistance.

  • PDF