• Title/Summary/Keyword: coating structure

Search Result 1,215, Processing Time 0.026 seconds

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

The research of anti-reflection coating using porous silicon for crystalline silicon solar cells (다공성 실리콘을 이용한 결정질 실리콘 태양전지 반사방지막에 관한 연구)

  • Lee, Jaedoo;Kim, Minjeong;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The crystalline silicon solar cells have been optical losses. but it can be reduced using light trapping by texture structure and anti-reflection coating. The high reflective index of crystalline silicon at solar wavelengths(400nm~1000nm) creates large reflection losses that must be compensated for by applying anti-reflection coating. In this study, the use of porous silicon(PSi) as an active material in a solar cell to take advantage of light trapping and blue-harvesting photoluminescence effect. Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. We expect our research can results approaching to lower than 10% of several reflectance by porous silicon solar cells.

  • PDF

Temperature on structural steelworks insulated by inorganic intumescent coating

  • Choi, J. Yoon;Choi, Sengkwan
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Predicting the fire resistance of structures has been significantly advanced by full scale fire tests in conjunction with improved understanding of compartmental fire. Despite the progress, application of insulation is still required to parts of structural steelwork to achieve over 60 minutes of fire rating. It is now recognised that uncertainties on insulation properties hinder adaptation of performance based designs for different types of structures. Intumescent coating has recently appeared to be one of most popular insulation types for steel structures, but its design method remains to be confirmed by empirical data, as technical difficulties on the determination of the material properties at elevated temperatures exist. These need to take into account of further physiochemical transitions such as moving boundary and endothermic reaction. The impetus for this research is to investigate the applicability of the conventional differential equation solution which examines the temperature rise on coated steel members by an inorganic intumescent coating, provided that the temperature-dependent thermal/mechanical insulation properties are experimentally defined in lab scale tests.

Preparation of Al-Sn Coating Bearings by RF Sputtering Method and Evaluation of Their Properties (RF 스퍼터링법에 의한 Al-Sn계 코팅베어링의 제작과 특성 평가)

  • 이찬식;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.139-146
    • /
    • 2000
  • The development of high performance materials is very important subject in order to enhance the properties of bearings whose role is to transfer energy harmoniously by reducing the problem of friction and wear down, etc. between the interacting solid surfaces in relative motion under high loads in comply with mechanical operating mechanism of engines. In this study, several (100-x)Al-xSn coating films (where x=85, 75, 65 atomic % at Al) on substrates which are abt. 2mm thickenss of Kelmet layer sintered back steel were prepared by using RF sputtering system. These coating films were observed the morphology by SEM(Scanning Electron Microscope) and investigated the crystal structure by XRD(X-ray Diffractor) for their properties. And friction coefficient of these films was measured by ball-on-disc tester for their tribological properties. From the experimental results, it was shown that high performance properties of bearing can be improved greatly by controlling the composition and morphology of material surface with effective use of the plasma-assisted sputtering process.

  • PDF

Oxidation Resistance of Al Diffusion Coating Layer on TiAl (TiAl합금의 Al 피복시 Al확산 피복층의 내고온산화성)

  • Lee, C.H.;Choe, J.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.150-156
    • /
    • 1997
  • The effect of variation of pack activators, compositions, temperature and time on the thickness and structure of aluminide coatings formed on the TiAl alloy was studied in one-step packs and two-step packs containing aluminum for the purpose of improvement of oxidation resistance. The thickness of coating layer was increased with increasing $NH_4Cl$ content up to 3wt% and then it was saturated. Oxidation resistance of coating layers carried out at one step pack was superior to that of ones through of two step pack. The improvement of high temperature oxidation resistance was due to the formation of a protective $Al_2O_3$ surface layers and coating the alloys with $TiAl_3$ phase.

  • PDF

Chemical Resistance Characteristics of Concrete Surface Coating Agent with Flexibility (유연성을 갖는 콘크리트 표면보호재의 내화학적 특성)

  • Han, Sang-Hoon;Yoon, Ju-Yong;Lee, Byung-Ro;Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.96-103
    • /
    • 2012
  • The purpose of this study is evaluate the ability of coating materials developed in order to prevent the durability deterioration of the concrete structure. Neutralization test, freezing and thawing test, and sulfate resistance test were performed in this study. Test results show that the developed coating material is effective against durability deterioration.

CrN/AlSiN multilayer coatings의 고온안정성 및 특성에 관한 연구

  • Kim, Yeong-Su;Kim, Gwang-Seok;Kim, Seong-Min;Heo, Yong-Gang;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.47-47
    • /
    • 2008
  • Cr and AlSi (Si=20 and 66 at.%) target들을 이용하여 Closed-field unbalanced magnetron sputtering (CFUBMS)으로 증착된 주기($\Lambda$)가 2.3 nm에서 8.0nm인 CrN/AlSiN multilayer coatings의 crystal structure, 화학적 조성, 및 기계적 특성을 glow discharge optical emission spectroscopy (GDOES), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and nano-indenter 등의 분석장비를 이용하여 분석하였다. 고온안정성을 시험하기 위하여 $800^{\circ}C$$1000^{\circ}C$ 공기중 에서 30분 열처리하였다. CrN/AlSiN multilayer coatings의 고온안정성은 Si조성이 증가함에 따라 향상되었다. Si이 18.2 at.%함유된 coating이 가장 우수한 고온안정성을 갖고 있다.

  • PDF

Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method (스프레이 코팅법으로 제조된 CNT/PVDF 압전 복합막의 자기분극 메커니즘)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.550-554
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process.

Al2O3 Coating on Transparent Polycarbonate Substrates for the Hard-coating Application (투명 폴리카보네이트 보호코팅을 위한 산화알루미늄 박막)

  • Kim, Hun;Nam, Kyoung-Hee;Jang, Dong-Su;Lee, Jung-Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.159-164
    • /
    • 2007
  • Transparent aluminum oxide films were deposited on polycarbonate (PC) substrates by inductively coupled plasma (ICP) assisted reactive sputtering. the oxygen flow rate was regulated by controlling the target voltage with a proportional integrate derivative controller. The PC substrate was treated with plasma prior to the deposition in order to the enhance the adhesive strength of the $Al_2O_3$ film. The characteristics of hardness, structure, density, transmittance, deposition rate, surface roughness and residual stress were investigated to estimate the possibility for the hard coating.