• Title/Summary/Keyword: coastal zonation

Search Result 14, Processing Time 0.017 seconds

The Post-glacial Vegetation History of the Lowland in Korean Peninsula (한반도 후빙기의 저지대 식생사)

  • 최기룡
    • The Korean Journal of Ecology
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 1998
  • This is the review of vegetational history of the post-glacial period in Korea. most of studies for vegetational changes are located in the lowland alluvial plain, especially below the hilly zone of western and eastern coastal regions of Korea. A couple of methods, pollen analysis and radiocarbon dating, have been employed in these studies. These results lead us to establish the pollen zonation in Korea as the followings. Yasuda et al.(1980) classified six period in Yongrang lake of sokcho. These are as follow I. 17,000-15,000yr B.P.: Picea, Abies, Pinus(Haploxylon), Larix stage, II.15,000-10,000yr B.P:Herb, Pteridophyta stage, III.10.000-6,700yr BP.:Quercus stage, IV.6,700-4,500yr B.P.:Pinus, Quercus, Carpinus stage, V.4,500-1,400yr B.P.:Quercus. Pinus stage, VI.1,400yr B.P.-present: Pinus, Herbs stage. Jo(1979) also divided the period into two stages from the outcomes of analysis done in Jumoonjin and other sites I.10,000-6,000yr B.P.:Quercus stage, II.6,000-present: Pinus-Quercus stage, and three substages: IIa.6,000-3,400 yr B.P.:lower Pinus stage, IIb.3,400-2,000yr B.P.:Pinus-Quercus stage, IIc.2,000-present: Pinus stage. Choi(1993, 1996) divided the period into three stages: I.6,000-5,000yr B.P.:Alnus, Quercus stage, II.5,000-4,000yr B.P.: Alnus, Quercus, Pinus stage, III.4,500-2,600yr B.P.: Alnus, Pinus stage. In the period around 6,000yr B.P. distinct dominant species clearly occupied the lowland of the eastern and western coasts. Thus, this strongly supports the fact that even if Korea experienced its warm and wet climate after the lateglacial, it underwent a different environmental change, dry climate, compared to the regions of Japan.

  • PDF

Spatial Distribution of Halophytes in the Goraebul Coastal Sand Dune, Korea (고래불 해안사구에서 염생식물의 공간분포)

  • Jeong, Min-Hyeong;Kim, Seok Cheol;Hong, Bo Ram;Lee, Kyu Song
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.380-388
    • /
    • 2017
  • Factors affecting spatial distribution of halophytes were analyzed in June 2012 at the Goraebul coastal dunes. In the Goraebul sand dune, distribution of halophytes was divided into three groups. The first group belonging to Elymus mollis, Carex kobomugi, Calystegia soldanella, Ixeris repens and Glehnia littoralis was distributed in the ridge of primary sand dune and dune slack. The second group belonging to Lathyrus japonicus and Zoysia macrostachya was distributed in the dune slack. The third group belonging to Pinus thunbergii, Vitex rotundifolia and Linaria japonicus was distributed in the pine forest of the secondary sand dune. E. mollis, C. kobomugi, C. soldanella, I. repens and G. littoralis was distributed in relatively unstable habitat of sand dunes due to the large amount of sand movement. V. rotundifolia was distributed in a relatively stable habitat. Factors that have the greatest influence on distribution of halophytes in the Goraebul sand dunes are distance from the seashore, topography, and the pine forest. The Goraebul sand dune is a relatively well-preserved area with minimal human intervention. Therefore, different distribution of physico-chemical factors by natural processes is essential to spatial distribution of halophytes than other sand dunes in Korea. Significant natural processes in the Goraebul sand dunes were advance and retreat of coastlines from waves, erosion and sedimentation of sand due to wind and waves, and dispersal of seawater.

Post LGM Fluvial Environment and Palynological Changes of South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Bong, Pil-Yoon;Nahm, Wook-Hyun;Lee, Heon-Jong;Lee, Yung-Jo;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Wkan;Oh, Keun-Chang
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2003
  • In Korea terrestrial fluvial sequences can be used as pedological and sedimentological markers indicating a millenium-scale environmental and climatic changes imprinted in fluvial sub-environments, which in turn are represented by the cyclicity of fluvial sands, backswamp organic muds, and flooding muds intercalations of frostcracked or dessicated brown paleosols. Post LGM and Holocene fluvial and alluvial sedimentary sequences of Korea are formed in such landscapes of coastal, floodplain, backswamp and hillslope areas. Among them, the most outstanding depositional sequences are fluvial gravels, sands and organic mud deposits in coastal, fluvial, or alluvial wetlands. The aim of this study is to explain the sedimentary sequences and palynofloral zones since the last 15,000years, on the basis of organic muds layers intercalated in fluvial sand deposits. Jangheung-ri site of Nam river, Soro-ri site of Miho river, Youngsan rivermouth site in Muan, Oksan-ri site of Hampyeong and Sanggap-ri site of Gochang are illustrated to interpret their sedimentary facies, radiocarbon datings, and palynofloral zonation. Up to the Middle to Late Last Glacial(up to 30-35Ka), old river-bed, flooding, and backswamp sequences contain such arboreal pollens as Pinus, Abies, and Picea, and rich in non-arboreal pollens like Cyperaceae, Gramineae, Ranunculaceae, and Compositae. During the LGM and post-LGM periods until Younger Dryas, vegetation has changes from the sub-alpine conifer forest(up to about 17-11Ka), through the conifer and broad-leaved deciduous forest, or mixed forest (formed during 16,680-13,010yrB.P), to the deciduous and broad-leaved forest (older than 9,500yrB.P). In the Earliest Holocene flooding deposits, fragments of plant roots are abundant and subjected to intensive pedogenic processes. During Holocene, three arboreal pollen zones are identified in the ascending order of strata; Pinus-Colyus zone(mixed conifer and deciduous broad-leaved forest, about up to 10Ka), Alnus-Quercus forest (the cool temperate deciduous broad-leaved forest, about 10Ka-2Ka), and Pinus forest (the conifer forest, about after 2Ka), as examplified in Soro-ri site of Cheonwon county. The palynological zonations of Soro-ri, Oksan-ri, Sanggap-ri, Youngsan estuary, and Gimhae fluvial plain have been recognized as a provisional correlation tool, and zonations based on fluvial backswamp and flooding deposits shows a similar result with those of previous researchers.

  • PDF

Analyzing Spectral Characteristics of Salt Marsh Vegetation Around Donggumdo Tidal Flat in Ganghwado, Korea (강화도 동검도 주변 조간대 내에 서식하는 염생식물의 분광특성 분석)

  • Lee, Yoon-Kyung;Eom, Jin-Ah;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.575-581
    • /
    • 2007
  • Suaeda japonica is the one of halophyte species which is widely spread in the Ganghwado tidal flat. Halophyte affects to the vertical development of wetland by enhancing the adhesion force of sediments. If demineralization of tidal flat proceeds, the colony of halophyte moves to the seaside where has relatively high salinity content. The change of halophyte zonation can be an environmental indicator to understand the landization of tidal flat. To interpret the spectral characteristics of halophyte, we measured the reflectance of suaeda japonica, reed and sediment around Donggumdo tidal flat in Ganghwado. First and second-derivation analysis was applied to these transformed spectra in order to identify which spectral ranges were distinguished with different coastal wetland vegetation and artificial structures. From the result, red reflectance peak of suaeda japonica were appeared at 600-650nm and greed reflectance peak of reed were appeared at 500-570nm. Spectra of sediments were continuously increased from 350-550nm without any absorption by chlorophyll. These reflectance were easily identified among the spectra of halophyte.