• Title/Summary/Keyword: coastal stabilization

Search Result 33, Processing Time 0.025 seconds

Application of Alkaline Stabilization Processes for Organic Fertilizer of Coastal Sediments (연안 양식장 퇴적물의 비료화를 위한 알카리 안정화 공법의 적용)

  • KIM Jeong Bae;CHOI Woo Jeung;LEE Pil Yong;KIM Chang Sook;LEE Hee Jung;KIM Hyung Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.508-513
    • /
    • 2000
  • In an attempt to evaluate the fertilizer of sediments obtained from coastal farming areas, chemical composition, bacteriological quality and heavy metals in the sediments alkalized by quicklime and magnesium hydroxide were analyzed. The optimum conditions of alkalization were also measured. A perfect reaction was possible by the addition of quicklime of $30{\%}$ at the rate of $25{\%}$ of sediment and $100{\%}$ of livestock wastes. According to the classification standard for compost constituent by Higgins, all composts had the intermediate or high grade in $T-N, K_2O,\;CaO\;and\;MgO$, but below the low grade in $P_2O_5$, Stabilization by quicklime and magnesium hydroxide has been known to inhibit bacterial decomposition of organic matter and activity of pathogenic organisms. In this study, raising pH of stabilized sediments to 12 for 2 hours (PSRP rriteria of EPA) allowed $99.9{\%}$ of coliform group, fecal group and viable cell count to be reduced. As a result, sediments of coastal farming areas are likely to be used to produce the organic fertilizer by alkaline stabilization.

  • PDF

Diversity and Zonation of Vegetation Related Micro-Topography in Sinduri Coastal Dune, Korea - Focused on the Natural Monument Area - (신두리 해안사구의 미지형별 식생의 대상구조와 다양성 변화 - 천연기념물 지정지를 중심으로 -)

  • Song, Hong-Seon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2007
  • The results of this research on the diversity, zonation of vegetation and micro-topography by TWINSPAN classification and DECORANA ordination, executed with Sinduri coastal dunes of Korea, are as follows: The vegetation and micro-topography of coastal dunes formed a noticeably clear zonation structure. The beach in the direction of the coastline saw a lot of appearance of Salsola komarovi and the primary dune was dominated by Elymus mollis. Imperata cylindrica var. koenigii and Carex pumila formed a colony at flat area of the sand hills and Calamagrostis epigeios was widely distributed at the wet slack. The secondary dune was dominated mostly by Ischaemum anthephoroides and Imperata cylindrica var. koenigii, and it showed an aspect of the distribution of Vitex rotundifolia and Rosa rugosa. while the hinterland hillside in the direction of inland was dominated by Robinia pseudo-acacia and Pinus thunbergii. However, Carex kobomugi, known as the pioneer species of the coastline-bound areas at the coastal dune, dominantly occupied the secondary dune of the rear side and continentally-inclined Miscanthus sinensi and Oenothera biennis of naturalized plant were irregularly spread over the whole of the coastal dune, so the stabilization of micro-topography seemed to be uncertain. Particularly, Miscanthus sinensis was predicted to be changed into dominant species of the primary dune, and secondary dune and slack having a commonly high species gathering inclination with the more progress of stabilization of the coastal dune. The expansion of sand hill wetlands and roads located between the primary dune and secondary dune was judged to have an effect on the zonation structure of plant distribution.

Coastal Afforestation Effect on Soil Physiochemical Properties at Sitakunda Coast of Chittagong, Bangladesh

  • Mamun, Abdullah-Al;Kabir, Md. Humayain;Kader, Mohammed Abdul;Hossain, Mohammed Kamal
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • This study was conducted at Sitakunda coastal afforestation range, comprised of four beats- Bansbaria, Bakkhali, Baterkhil and Bogachattar, in Chittagong. Afforestation effects on soil physicochemical properties in comparison to adjacent barren land were analysed. In the study area, an area of 3277.33 ha was planted with Sonneratia apetala, Avecinnia officinalis, Excoecaria agallocha, Bruguiera sexangula, Ceriops decandra from 1968 to 2011. We found positive soil physicochemical changes in plantations in comparison to adjacent barren land. Soil bulk density of plantation was lower than the adjacent barren land. Soil pH and soil salinity were significantly higher in barren land whereas soil organic matter, organic carbon, nitrogen, phosphorus, potassium of plantations were higher in afforested land. Soil texture ranged from clay loam to sandy loam in different depth of these two types of land. However, this study concludes that there is clear evidence that afforestation has positive impacts on all soil properties in different location and soil depths in the study area.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Bioremediation of Polycyclic aromatic hydrocarbons (PAHs) and Heavy metals in contaminated marine sediments at filed scale study using biostimulant ball (오염연안저질에 함유된 PAH와 중금속의 생물정화를 위한 생물활성촉진제의 현장적용)

  • Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-chae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.132-134
    • /
    • 2016
  • The Study mainly focused on bioremediation of 16 types PAHs and heavy metals in contaminated marine sediments at filed scale study using slow release biostimulant ball (BSB) was investigated. In our experiment, filed scale study ($1m{\times}1m$) was performed and the effect of BSB on PAHs and heavy metals were analysed. BSB size and distance were determined and optimum size and distance were 3cm and 5.5cm respectively. BSB containing nutrients of acetate, nitrate and sulphate which can enhance the activity of microorganism to increase degrading capacity of PAHs and enhance the heavy metals stabilization also to decrease bioavailability. PAHs containing 16 types of 2, 3, 4, 5 and 6 rings compound PAHs were found and to degrade upto 100% in 2, 3 rings, upto 90 to 94% in 4 and 5 rings and 6 ring compound was degrade up to 70%. For heavy metals stabilization percentage was increased using BSB sediment and exchangeable portion was decreased and residual portion was increased in all analysed heavy metals. BSB enhance the PAHs degradation and stabilization of heavy metals percentages. BSB is a promising method for remediation of PAHs and heavy metals in contaminated marine sediments.

  • PDF

Reduction Effect for Deposition in Navigation Channel with Vegetation Model (식생모형에 의한 항로매몰 저감 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk;Kim, Ick-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.659-664
    • /
    • 2012
  • Coastal vegetaion consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of waves and sediments stabilization are often listed among these services. From this point of view, artificial vegetation model is an effective method of controlling sea bed and stabilization without damaging the landscape or the stability of the coastaline. In this study, numerical and hydraulic physical test for predicting deposition proces of a navigation channel caused by wave action is proposed. In the numerical model, we develop a numerical model for describing the wave attenuation and sediment transport in a navigation channel with a vegetation area. In addition, hydraulic model tests is performed in a navigation channel with irregular waves to examine the effect of vegetation in relation to deposition reduction in navigation channel. A comparison between the results of hydraulic and numerical tests shows resonable agreement.

A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests (원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구)

  • Lee, Cheo-Keun;Shin, Bang-Woong;Heo, Yol;Ahn, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1994
  • One of problems being faced during construction of soil structures along the coastal regions is the stabilization of soft clay foundation, In this study, centrifugal model bests were conducted to investigate behavior effect of soft foundation reinforced by cement -soil piles for the stabilization of softs clay foundation during the embankment construction. This paper presents results of settlement and heaving behavior of reinforced and unreinforced foundation with time under the swaged loading for different best conditions. The test results have shown that the reductions of vertical settlement of the foundation and heaving of the ground surface adjacent to the embankment are greatly influenced by strength of improved pile, and moisture content, and especially the ratio of replacement area.

  • PDF

Solidification/stabilization of simulated cadmium-contaminated wastes with magnesium potassium phosphate cement

  • Su, Ying;Yang, Jianming;Liu, Debin;Zhen, Shucong;Lin, Naixi;Zhou, Yongxin
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • Magnesium potassium phosphate cement (MKPC) is an effective agent for solidification/stabilization (S/S) technology. To further explore the mechanism of the S/S by MKPC, two kinds of Cd including $Cd(NO_3)_2$ solution (L-Cd) and municipal solid waste incineration fly ash (MSWI FA) adsorbed Cd (S-Cd), were used to compare the effects of the form of heavy metal on S/S. The results showed that all the MKPC pastes had a high unconfined compressive strength (UCS) above 11 MPa. For L-Cd pastes, Cd leaching concentration increased with the increase of Cd content, and decreased with the increase of curing time. With the percentage of MSWI FA below 20%, S-Cd pastes exhibited similar Cd leaching concentrations as those of L-Cd pastes, while when the content of MSWI FA come up to 30%, the Cd leaching concentration increased significantly. To meet the standard GB5085.3-2007, the highest addition of S-Cd was 30% MSWI FA (6% Cd contained), with the Cd leaching concentration of 0.817 mg/L. The S/S of L-Cd is mainly due to chemical fixation, and the hydration compound of Cd was $NaCdPO_4$, while the S/S of S-Cd is due to physical encapsulation, which is dependent on the pore/crack size and porosity of the MKPC pastes.

Comparision of Tidal Current Patterns at Keum River Estuary before and after Construction of Keum River Bank and Coastal Structures (금강하굿둑과 각종 해안구조물 설치 전, 후의 금강하구역 해수유동 양상 비교)

  • Jang, Chang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.601-610
    • /
    • 2021
  • The tidal current patterns at Keum River Estuary before and after the construction of coastal structures were compared according to the CASES. The depth-integrated and tidal difference treatment applied FLOW2DH numerical model was used for the tidal current predictions. The test conditions consisted of before construction of coastal structures (CASE1), after construction of coastal structures (CASE2), and the addition of watergate operation(CASE1Q and CASE2Q), and present (CASE3). CASE1 showed a stable tidal current pattern, such as a natural estuary. In CASE2, the tidal current velocities and directions of the Keum River Estuary were changed due to the installed coastal structures. In particular, the tidal current velocities of the Gaeya open channel sections (P5~P9) in CASE2 were calculated to be 10~30% larger than that of CASE1. In the case of the Gunsan Inner Harbor (P4), which is closest to the Geum River Estuary, the ebb flow rate was approximately 250~300% faster than that of other CASEs due to the discharge of the watergate operation for 2.7 hours during the ebb of CASE1Q and CASE2Q. This will affect sediment transport, and it is predicted to lead to seabed changes. CASE3 is considered to be entering the stabilization stage according to the simulation of the tidal current velocities and directions of the Keum River Estuary and the surrounding coastal area.

Characteristics of Erosion Variation at Haeundae Beach due to Multiple Typhoons (복수의 태풍내습에 의한 해운대 해수욕장 침식변화특성)

  • Kang, Tae-Soon;Lee, Jong-Sup;Kim, Jong-Beom;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.920-926
    • /
    • 2019
  • In this study, we analyzed the erosion variation of beach area at Haeundae Beach after coastal improvement project using video monitoring system operated by the Coastal Erosion Monitoring (Ministry of Oceans and Fisheries). Haeundae Beach was well maintained and stabilized following large scale nourishment through coastal improvement project despite of seasonal fluctuations. However, multiple typhoons over the last two years caused beach stabilization patterns and seasonal fluctuations to lost equilibrium, resulting in rapid erosion. In particular, the sandy beach was eroded by typhoon Solic and Kongray in 2018 and failed to recover beach area in winter by seasonal fluctuations. And due to multiple typhoons in 2019, the beach area was reduced 9.5 % (12,607 ㎡) year-on-year. According to analyze the observed wave and beach area data in Haeundae, the tendency of erosion and sedimentation was influenced by seasonal incident wave direction for each section(west, center and east part). Therefore, to identify the causes of decreasing seasonal fluctuation characteristics and continuous erosion, hereafter, more precise monitoring of different factors are needed, such as the crest heights of submerged breakwater and its loss of function, and sand leakage to the outside around submerged breakwater.