• Title/Summary/Keyword: coastal remote sensing

Search Result 346, Processing Time 0.03 seconds

APPLICATION OF REMOTE SENSING FOR COASTAL HAZARD MONITORING IN TAM GIANG - CAU HAI LAGOON, VIETNAM

  • Dien, Tran Van;Lan, Tran Dinh;Huong, Do Thu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.455-458
    • /
    • 2006
  • Stretching on the coastline of 70 km, the Tam Giang - Cau Hai Lagoon plays a very important role for the coastal ecology and socio-economic development of Hue region where was Vietnam's Ancient Kingdom Capital and recognized as a World's Cultural Heritage. Recently, coastal hazard in the lagoon have occurred seriously such as inlet movement and fill up, coastal erosion, flood and inundation, etc. These hazards have impacted on lagoon environment, resources, ecosystems, socio-economic and sustainable development of this coastal area. This paper present a case study using remote sensing data in combination with ground survey for monitoring the coastal hazards in Tam Giang - Cau Hai lagoon in recent decades. Analysis results find that during its natural evolution, the lagoon has been being in three situations of only one, two and three inlets. When inlets opened or displaced, coastal erosion have occurred seriously toward new balance condition. Flood and inundation occurs every rainy season in lowland plain around lagoon. The historical flood happened in early of November 1999 with six days long, created very terrible damages for Thua Thien Hue province. Remote sensing data with capability of regular update, large area coverage is effective provide real-time and continuous information for coastal hazards monitoring.

  • PDF

Coastal Remote Sensing in Korea (한국의 연안원격탐사 활용)

  • Ryu, Joo-Hyung;Hong, Sang-Hoon;Jo, Young-Heon;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.231-236
    • /
    • 2020
  • Recently, great attention for environment changes of coastal regions due to climate change by the global warming has been raised. In addition, coastal environments which are very useful resources has been impacted by anthropogenic activities such as urbanization or fishery, etc. In situ measurements and remote sensing application using various platforms equipped by payloads with very diverse spectral resolution has been conducted to protect and reconstruct invaluable coastal region. In this special issue, several studies showing very interesting results of the coastal remote sensing in Korea. This special issue contains the research activities over the coastal regions in Korea has been performed by the KIOST Korea Ocean Satellite Center and academic organizations. We hope to share useful information on the various domestic coastal remote exploration activities and to contribute to develop scientific research to protect our invaluable coastal environment.

Production of the Thematic Standard Map for Coastal Regions Based on Remote Sensing Data (원격탐사기반 연안주제도 선진화 방안 연구)

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1159-1169
    • /
    • 2017
  • Since 1970's, various satellite remote sensing technology has been developed and accumulation of observational data has been carried out, and coastal environment monitoring research is being conducted through analysis of relationship between satellite remote sensing data and coastal sedimentary environment. However, generation of coastal thematic maps by various national agencies are not included in the production of coastal themes using satellite imagery. In this study, we want to deduct the current problems through survey of marine spatial information provided by the government. The purpose of this study is to investigation the direction of the development of large scale coastal thematic maps by analyzing coastal boundary map, coastal topographic map and coastal sedimentary facies map.

Upwelling Proxy Improvement and Validation Using Satellite Remote Sensing along Southwest of the East Sea: Case Study in 2019

  • Kim, Deoksu;Bae, Dukwon;Choi, Jang-Geun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • Coastal upwelling is a significantly imperative process for understanding the interactions between physical and ecological processes and has been investigated incessantly. In this study, we explored the upwelling index, specifically upwelling age (UA). UA enabled us to observe the initiating, sustaining, and decaying upwelling processes. Although the sensitivity of many other geophysical parameters to estimate UA has been investigated, the wind direction has not been evaluated. Thus, we assessed the appropriate wind direction for the UA and obtained efficient upwelling signals from the four coastal stations. Furthermore, we applied the UA and compared it with the satellite sea level anomaly, sea surface temperature, and chlorophyll-a changes to validate how UA depicts their spatial extents. Thus, UA can predict the timing of coastal upwelling events using predicted geophysical parameters.

APPLICATION OF OCEAN COLOR REMOTE SENSING IN MARINE STUDY OF VIETNAM ? STATUS AND POTENTIAL

  • Long, Bui Hong;Son, Tong Phuoc Hoang;Khin, Lau Va
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.170-173
    • /
    • 2006
  • The remote sensing is powerful oceanographic tools not only for Integrated Coastal Zone Management (ICZM) but also for various areas of oceanography. Thank to effort of Government and local authorities as well as active support of international institutions, many projects on the applied oceanography had and have been caring out in coastal and offshore waters of Vietnam sea. One of the modern methods which has been used in these project is ocean color remote sensing technique. This paper will present some preliminary results obtain from application of these techniques in study of coastal and offshore environment of Vietnam sea.

  • PDF

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

Red Tide Prediction in the Korean Coastal Areas by RS and GIS

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.332-335
    • /
    • 2006
  • Red tide(harmful algae) in the Korean Coastal Waters has a given a great damage to the fishery every year. However, the aim of our study understands the influence of meteorological factors (air and water temperature, precipitation, sunshine, solar radiation, winds) relating to the mechanism of red tide occurrence and monitors red tide by satellite remote sensing, and analyzes the potential area for red tide occurrence by GIS. The meteorological factors have directly influenced on red tide formation. Thus, We want to predict and apply to red tide formation from statistical analyses on the relationships between red tide formation and meteorological factors. In future, it should be realized the near real time monitoring for red tide by the development of remote sensing technique and the construction of integrated model by the red tide information management system (the data base of red tide - meteorological informations). Finally our purpose is support to the prediction information for the possible red tide occurrence by coastal meteorological information and contribute to reduce the red tide disaster by the prediction technique for red tide.

  • PDF

SIMP: SLICKS AS INDICATORS FOR MARINE PROCESSES

  • Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.950-953
    • /
    • 2006
  • SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data.

  • PDF

Analysis of Sea Surface Wind over the Complex Coastal Area Using SAR images (SAR영상에 의한 복잡해안지역 해상풍 분석)

  • Hwang, Hyo-Jung;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.482-483
    • /
    • 2009
  • This paper is foundation paper about national wind map verification using remote sensing, based on analysis of comparison between numerical simulation and remote sensing on complex coastal area of regional coast. As a result analysis using NCAR/NCEP, wind direction of numerical simulation and remote sensing is same. but, wind direction of some case is showed different. Such as this result, if it would be used without verification of analyzed data, present ability of occurring lots of error, and it will be verified based on using survey data or atmospheric data.

  • PDF

Spectral Characteristics of Shallow Turbid Water near the Shoreline on Inter-tidal Flat

  • Lee, Kyu-Sung;Kim, Tae-Hoon;Yun, Yeo-Sang;Shin, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.131-139
    • /
    • 2001
  • Extraction of waterline in tidal flat has been one of the main concerns in the remote sensing of coastal region. This study aimed to define the spectral characteristics of turbid water near the shoreline and to find the appropriate spectrum to delineate the waterline at the inter-tidal flat in the western coast of Korean Peninsula. Spectral reflectance curves were obtained by the field measurements under the diverse condition of water depth and turbidity at the study area in Kyong-gi Bay. Spectroscopy measurements showed that reflectances of the exposed mudflat, shallow turbid water, and normal coastal water were significantly different by wavelength. Shallow water near the waterline showed diverse conditions of turbidity. Spectral reflectance tends to increase as turbidity increases, particularly at the visible and near infrared spectrum. At the middle infrared wavelength, tidal water showed very little reflectance regardless of the turbidity and water depth and was easily disting from the exposed tidal flat. The exact waterline between exposed tidal flat and seawater should be extracted from the image data obtained at the middle infrared wavelength.