• Title/Summary/Keyword: coastal erosion

Search Result 301, Processing Time 0.025 seconds

A Numerical Simulation on the Coastal Cliff Change with Non-Erodible Bottom

  • Kim, Nam-Hyeong;Kang, Hyun-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • 해안단애의 형성과 침식에 의한 해안선의 후퇴를 저지하기 위해 방조벽을 설치하여 해빈의 침식 변화과정에 관한 수치모의를 수행하였다. 평균수위의 상승을 동반하는 폭풍해일이 내습하는 경우 평균수위의 상승이 방조벽의 세굴을 가속화시킨다. 그러므로 본 연구는 사빈 해안에 방조벽을 설치하는 경우 해빈 침식의 거동을 예측하는데 이용할 수 있겠다.

A Study on Coast Sand Dune Fixation and Stabilization in Japan(II) - On Seaside Protection Forest in Okinawa Prefecture - (일본(日本)의 해안사방(海岸砂防)에 관한 연구(II) -충승현(沖繩縣)의 해안보안림(海岸保安林)을 중심으로-)

  • Chun, Kun-Woo;Yi, Jae-Seon;Park, Wan-Geun;Koki, Zenfuku;Nakashima, Yuhki;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.69-81
    • /
    • 2004
  • Management system of coastal erosion-control forest in Japan together with coast sand dune fixation and stabilization were investigated and analyzed to introduce to Korean researchers the many-sided importance and function of coastal forest and its change from the standpoint of social value. In this study some suggestions and ideas were proposed for establishment of coastal forest including seaside protection forest characteristics and tree species for coastal dune fixation, based on the analysis of data which were collected from the seaside protection forest in Okinawa Prefecture in Japan.

  • PDF

Impact of Coastal Forests on Geomorphological Changes of Coastal Dunes: A Case of the Sohawang-ri Foredune, Chungnam Province (해안사구 지형변화에 대한 해안림의 영향: 소황리 전사구를 사례로)

  • Kim, Yoonmi;Kong, Hak-Yang;Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.51-66
    • /
    • 2021
  • This study shows that coastal sand dunes are negatively affected by coastal forests. In South Korea, planting pine trees on the dunes has been carried out to stabilize the dune landscapes and protect residential areas from coastal disasters since the 20th century. However, this strategy could reduce the resilience of dunes. In this study, we selected three monitoring sites with automated weather stations to compare the geomorphological and environmental characteristics between tree-covered and grass-covered dunes at Sohwang-ri, Boryeong-si, Chungnam Province for three years. In addition, we monitored the rates of erosion and deposition using eight pins along the dune crests. We found that the forest affected both wind velocity and direction, resulting in decreased blown sand supply to the dunes in front of the forest. The velocity of the strong winds faster than 5 m/s diminished to 10%-30% of the control sites, and the direction of northwesterly wind were skewed to the north by about 6°. Sand deposition occurred at about 15-20 m away from the pine forest and the amount was only 1/10 of the deposition within the grass-covered dunes. This study suggests that planting trees in coastal dunes is an undesirable strategy with negative impacts on the landscape management.

Shoaling Prediction by the Statistical Joint Distribution in the Shallow Water Region (천해역에 있어서의 결합확률분포의 천수변형에 대한 연구)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • Accurate estimation of irregular wave transformation when the waves propagate from deep water to shallow water region is very important for the design of coastal structures and establishing beach erosion control. In this study. the transformation of directional spectrum is tested numerically using a conservation equation for energy flux and. based upon the joint distribution of wave height. period and wave direction. shoaling effects are predicted in the shallow water region. The applicability of the proposed procedure is verified through comparison with field observation data.

  • PDF

Sea-level Change and Coastal Erosion (해수면 변화와 해안 침식)

  • Jeon, Dong-Chull
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.289-304
    • /
    • 1995
  • Time series of the relative sea levels at the selected tide-gauge stations in the North Pacific and historical aerial photographs in the Hawaiian Islands are analyzed. Long-term rising trend of sea level ranges from +1 to +5 mm/yr at most of the stations, which is primarily due to global warming and tectonic motion of the plates. The annual and interannual fluctuations of sea level result from the thermal expansion/contraction of sea-surface layer due to the annual change of the solar radiation and possibly from a coupled ocean-atmosphere phenomenon associated with an ENSO event, respectively. Sea-level changes in three different time-scales (linear trend. annual oscillation, and interannual fluctuation) and their quantitative contribution to the shoreline changes as a result of long-term cross-shore sediment transport arc hypothesized.

  • PDF

Sediment Fluxes in Shelf Seas Modelling and Monitoring

  • Prandel, David
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.144-153
    • /
    • 2002
  • This is a review paper, assessing progress reported in a Special Issue (Prandle and Lane, 2000) of Coastal Engineering focusing on simulation of SPM in the North Sea, against issues over a diverse range of shelf seas and their coastal margins. The broad objectives of reproducing the characteristics of sediment fluxes off an open coast and relating these to tidal and wave forcing were achieved. However, accurate computation of these fluxes remains sensitive to largely empirical coefficients used in determining erosion and deposition rates. Bed roughness strongly influences both these coefficients and the associated near-bed current magnitudes (including wave impact thereon). Bed roughness can change significantly over a tidal cycle and dramatically over seasons or in the course of a major event. Accurate simulation of sediment fluxes on a day-to-day basis is constrained by dependency on the initial distribution of mobile sediments. The latter depends on rates and locations of original sources and the time history of preceding events. Remote sensing via aircraft could provide data for assimilation into such models to circumvent these constraints. The approaches described here can be readily applied to other coastal regions to indicate the likely distributions and pathways of known sediment sources. However quantitative simulations will require an associated observational programme. A subsequent stage is to understand the evolving balance between the forecasted sediment movement - the resulting morphological adjustments and thence modifications to the prevailing tidal current and wave regimes.

A Study on the Concentration of Wave Energy by Construction of a Submerged Coastal Structure (해저구조물 설치에 따른 파랑에너지 집적에 관한 연구)

  • Gug, S.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.69-91
    • /
    • 1992
  • A new type of horizontal submerged break water or fixed structure to control waves near coastal area is introduced to focus wave energy before or behind it. Intentionally, the water depth near the structure is changed gradually to get a refraction and diffraction effect. The concentration of wave energy due to the structure was analyzed for the selected design of structure. The shape of the submerged structure in consideration is a circular combined with elliptical curve not to cause reflection of waves at the extreme edge of the structure but cause wave scattering. The direction of the structure against the incident wave is changed easily in the model Applying a regular wave train the following were examined. 1) whether a crescent plain submerged structure designed by the wave refraction theory can concentrate wave energy at a focal zone behind and before it without wave breaking phenomenon. 2) Location of maximum wave amplification factor in terms of the incident wave direction, wave period, etc. In any event the study would contribute to control waves near coastal area and to protect a beach from erosion without interruption of ocean view it is an useful study for the concentration of wave energy efficiently with the increase of wave height.

  • PDF

Evaluation of Shoreline Retreat Rate due to a Sea Level Rise using Theory of Equilibrium Beach Profile (평형해빈단면이론을 이용한 해수면 상승에 따른 해안후퇴율 산정)

  • Kang, Tae Soon;Cho, Kwangwoo;Lee, Jong Sup;Park, Won Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.197-206
    • /
    • 2014
  • The purpose of this study is to evaluate coastal erosion due to a sea-level rise. The shoreline retreat rate was calculated due to future sea-level rise. Shoreline retreat rates were quantified with the cross-sectional data of 23 sandy coasts (12 sites from east coast, 5 sites from south coast, and 6 sites of west coast) and 3 cross-sectional profiles from each side of the coasts in Korea. The theory of equilibrium beach profile was employed in this study to evaluate the applicability of the theory into the coast of Korea and was tested with 15 cross-sectional beach profiles. Four scenarios of future sea level rise such as 38 cm, 59 cm, 75 cm, and 100 cm were adopted to estimate the shoreline retreat rates. Overall shoreline retreat rates for the coasts in Korea were predicted as 43.7% for 38 cm, 60.3% for 59 cm, 69.2% for 75 cm, and 80.1% for 100 cm sea level rises, respectively. Retreat rates in the east coast (29.6% for 38 cm, 45.1% for 59 cm, 56.0% for 75 cm, and 69.9% for 100 cm) showed relatively low compared to the south coast (51.9%, 67.6%, 77.2%, 87.3%) and the west coast (53.8%, 71.0%, 78.5%, 86.4%). However, all sandy coasts in Korea were assessed to be vulnerable with increasing sea-level rise. There are uncertainties in the assessment of this study, which include the limitation of the assessment model and the lack of the spatio-temporal data of the beach profiles. Therefore, this study shows that it is very important to spend integrated efforts to respond coastal erosion including comprehensive observations(monitoring) and the development of scientific understanding on the field.

Observation on the Shoreline Changes Using Digital Aerial Imagery for Bangamoeri Beaches (디지털항공영상을 활용한 방아머리 해빈의 해안선 변화 관측)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.971-980
    • /
    • 2017
  • In this research, it was presented that the strategic approach for the long-term shoreline changes using historic digital aerial images can be effective for the analysis on the bangameori beach, west coast of South Korea. For this purpose, we collected several historic digital aerial images over 9 years in the research filed and conducted GPS-VRS surveying for GCP (Ground Control Point) acquisition. Also we collected existing two dimensional shoreline digital map which was published by KHOA (Korea Hydrographic and Oceanographic Agency) in the year 2013. With these multi data sets, we provided quantitative analysis on coastal erosion using the long-term shoreline changes in the beach. Also, As the results it was found that 2m sea level was retreated in the research period with maximum 0.31m length.

Numerical Analysis of Flow and Bed Changes due to Tributary Inflow Variation at the Confluence of the Namhan River and the Geumdang Stream (남한강과 금당천 합류부 구간에서의 지류 유입유량 변화에 따른 흐름특성 및 하상변동 수치모의)

  • Ji, Un;Jang, Eun Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1027-1037
    • /
    • 2014
  • Flow and bed changes due to tributary inflow variation at the confluence of the Namhan River and the Geumdang Stream were analyzed in this study using a two-dimensional numerical model. As a result of the numerical analysis, the velocity downstream of the confluence was greater than the velocity upstream of the confluence in the main channel regardless of the magnitude of tributary inflow. However, as tributary discharge increased, the channel erosion was accelerated and the dry area was produced at the tributary. Due to the bed erosion at the tributary, sediment transport was increased and the eroded sediments were deposited in the confluence area. The deposition in the confluence area changed the flow direction at the main channel to the left side and the localized flow eroded the channel bed at the left side. Therefore, it is expected that bank failure due to continuous bed degradation is possible in this area.