• Title/Summary/Keyword: coarse-fine

Search Result 1,421, Processing Time 0.035 seconds

Optimal Control of a Coarse/Fine Position Control System with Constraints (제한조건물 고려한 조미동 위치제어 시스템의 최적제어)

  • 주완규;최기상;최기흥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.344-344
    • /
    • 2000
  • Recently, the demand for high precision and large stroke in linear positioning systems is increasing in industry. A coarse-fine position control system composed of a linear motor and a piezoelectric actuator has such characteristics. Many optimal control laws have been applied to the position control of coarse-fine actuators but most of them did not take account into constraints. In this study, model predictive control (MPC) method with constraints is applied to the position control of the coarse-fine actuator and the performance of MPC is compared with those of conventional control laws.

  • PDF

Effect of substratum types on the growth of assimilators and stolons of Caulerpa okamurae (Bryopsidales, Chlorophyta)

  • Seo Kyoung, Park;Jang K., Kim;Han Gil, Choi
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.293-299
    • /
    • 2022
  • To examine the effects of substratum types on the growth of Caulerpa okamurae, sand surface and sand burial experiments were conducted. Five assimilators (erect fronds) per replicate were cultured for 15 d on the surface of three different treatments: fine sand (200 ㎛), coarse sand (600 ㎛), and no sand (control). Also, three stolons and three assimilators were buried by fine grain or coarse grain sands and incubated for 15 d. In both experiments, other culture conditions included 25℃, 30 μmol photons m-2 s-1, and 16 : 8 h L : D (light : dark). In both experiments, stolon + assimilator-, assimilator-, and stolon-weights were measured. Relative growth rates (RGRs) of stolon + assimilator weights ranged from 0.43 to 1.95% d-1 at no sand and fine sand treatment, respectively. RGRs for the weight of stolon + assimilator and new assimilators were significantly greater on the fine- and coarse sand surface than the control. In the burial experiments, RGRs of stolons (4.28% d-1 at coarse sand and 5.57% d-1 at fine sand, respectively) were significantly greater than those of assimilators (1.38% d-1 at fine sand and 1.82% d-1 at coarse sand, respectively). When stolons were buried, RGRs for assimilators were greater at the fine sand than at the coarse sand treatment. On the other hand, RGRs of buried assimilators for total frond weights and for newly produced stolons were significantly greater at the coarse sands than at the fine sands. In conclusion, C. okamurae grew well with all substrates of sands and showed better growth on fine sands than coarse ones. This result suggests that the growth of stolons and assimilators of C. okamurae is stimulated after stable attachment to the sand substrates by rhizophores. In addition, stolons showed higher growth rates than the assimilators in the sand burial states, indicating that stolons are more tolerant to low light than assimilators of C. okamurae.

A Review on the Effects of Fine Particle Content on Shear Strength of Coarse Geomaterials (세립분 함유율이 조립재료의 전단강도에 미치는 영향에 관한 기초적 검토)

  • 신동훈;이경필;구방서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.861-866
    • /
    • 2003
  • While coarse geomaterials with abundant fine particles are common, comparatively little information is available to know their engineering behaviour. In this study, the effects of fine particle content of coarse geomaterials on engineering properties, such as shear strength, deformability and permeability were investigated. It was known through large triaxial compression tests that when they are compared with good rock materials, the rock materials with abundant fine particles have different compaction characteristics, low shear strength, low stiffness, and low permeability.

  • PDF

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate (잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향)

  • 정용욱;윤용호;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

A Robust Track-following Control for the Stable Coarse Seek (안정적인 조동 검색을 위한 강인 트랙 추종 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • In this paper, we provide a robust track-following controller design method for the stable coarse seek control. Due to the inaccurate velocity control during a coarse seek, the shake of fine actuator is generated and thus a gain-up track-following control is required to complete stably the coarse seek. To this end, a loop gain adjustment algorithm is introduced to estimate accurately the shake of fine actuator. A weighting function can be properly selected from a minimum tracking gain-up open-loop gain, calculated from the estimated shake quantity of fine actuator. A robust tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem using the weighting function. The proposed design method is applied to the coarse seek control system of an optical rewritable drive and is evaluated through the experimental results.

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

Characteristics of Concentration and Size Distribution of PAHs of Total Suspended Particulates in urban air (도시대기부유분진중 다환방향족 탄화수소의 농도 및 입경분포 특성)

  • 조기철;이승일;김달호;허귀석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • In order to comprehension of the behaviour of PAHs in air which is known as carcinogens and/or mutagens suspended Particulates in ambient air were collected by Anderson air sampler from 1992. 6 to 1993. 5 in Seoul. Ten species of PAHs( Phen, An, Fl, R, Py, BaAn, BaP, Chry, BeP, DiB(a, h)An, I123p) were analyzed to understand monthly variations of PAHs distribution of PAHs concentration according to particle size, and correlation between PAHs and independent charactierstics of PAHs The highest concentration of TSP was 155.58$\mu\textrm{g}$/㎥ in May and the lowest was 60$\mu\textrm{g}$/㎥ in August. Concentration of TSP was more affected by coarse particles in spring, otherwise which was more affected by fine particles in winter. According to results of anaylsis of samples that were collected by Anderson air sampler, concentration of PAHs was more high in winter than that in summer. In almost samples collected by Anderson air sampler, concentration of PAHs was more high in coarse particles than in fine particles, but BaP well known as carcinogenic matter had more high concentration in fine particles(56-97.5%) than that in coarse particles(2.5-46%). Correlation between concentrations of TSP and PAHs was more high in fine Particles than in coarse Particles. Both fine particles and coarse particles have negative correaltion with radiation.

  • PDF