• 제목/요약/키워드: coarse to fine aggregate ratio

검색결과 109건 처리시간 0.023초

급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용) (Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate))

  • 황의환;이철호;김진만
    • 공업화학
    • /
    • 제23권4호
    • /
    • pp.409-415
    • /
    • 2012
  • 폴리머 콘크리트 복합재료의 제조에 재활용하기 위하여 산업폐기물로 처리되고 있는 제강슬래그를 아토마이징 공법으로 구형의 골재를 제조하였다. 구형의 급냉 제강슬래그는 입도에 따라 폴리머 콘크리트 복합재료의 잔골재(강모래)와 굵은 골재(쇄석)를 대체하여 사용하였다. 급냉 제강슬래그를 사용하여 제조한 폴리머 콘크리트 복합재료의 제 물성을 조사하기 위하여 폴리머 결합재의 첨가율과 급냉 제강슬래그의 대체량에 따라 다양한 배합의 폴리머 콘크리트공시체를 제조하여 물성시험을 실시하였다. 시험결과, 급냉 제강슬래그를 적정량 대체하여 사용한 공시체의 기계적 강도가 현저히 향상되었으며(최대압축강도 117.1 MPa), 폴리머 콘크리트 복합재료의 생산원가에 가장 큰 영향을 미치는 폴리머 결합재의 사용량을 현저히 절감할 수 있었다. 그러나 폴리머 콘크리트 복합재료의 내열수성시험에서 공시체의 기계적 강도가 현저히 감소되었다.

F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구 (A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design)

  • 문종욱;유택동;서치호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF

석탄폐석을 이용한 콘크리트의 특성 연구 (Evaluation for Characteristics of Coal-mine Waste Concrete)

  • 김광우;도영수;이상범
    • 한국농공학회지
    • /
    • 제43권2호
    • /
    • pp.132-139
    • /
    • 2001
  • This study deals with coal-mine waste (CMW) for use in concrete as a replacement of normal aggregates. The CMW was collected from Sabuk region. Ganwon-do. Fine and coarse aggregates from CMW were prepared by using a crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abrasion ratio below 20%. However, particle shape of CMW was poor because of non-isotropic nature of matrix which cause particles to be long or flat. Since irregular particles caused a poor workability, to make workability better, a 1/4 of coarse aggregate was replaced with normal aggregate together with a superplasticizer. Compressive strength and other mechanical properties of CMW concrete were very good. Color of the concrete was darker than normal concrete due to black color of CMW. In conclusion, characteristics of CMW concrete was acceptable for use as a structural concrete material.

  • PDF

고로슬래그 미분말에 순환골재 미분말의 입도 변화에 따른 무시멘트 모르타르의 기초적 특성 (Effect of Grading of Fine Powder obtained from Recycled Aggregates on Fundamental Properties of Slag-based Mortar)

  • 황금광;박재용;정상운;허영선;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.37-38
    • /
    • 2013
  • The fine powder obtained from the manufacturing process of recycled coarse aggregate contains unhydareted cement particles on their surface. It is believed that the alkalinity of the powder (11.0-12.5) is enough to active the slag-based composites. In this paper, the obtained powder was sieved and divided into two sizes, i.e., 0.08 mm and 0.3 mm, and added to the slag-based mortar. Results showed that the fine powder had an effect on the slump and the compressive strength of slag-based composites. With the different pH values of the powder, it could be seen that the distance between the two level powders. And found the peak 28 days compressive strength as the replacement ratio of the recycled aggregate powder changed. The findings from this study provide an indication that with achieved compressive strength, the fine powder can be used in a light weight concrete.

  • PDF

석탄폐석을 이용한 콘크리트의 역학적 거동 (Mechanical Behavior of Coal Mine Waste Concretes)

  • 이봉학
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.105-112
    • /
    • 1996
  • This paper presents coal mine waste (CMW) for use in concrete manufacture as a replacement of normal aggregates. The CMW in this study was collected from Sabook, Jungson-kun, Kangwon-do. Fine and coarse asggregates from CMW were prepared by crushing it in a jaw crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abration ratio below 20%, but particle shape of CMW was long or flat, which caused a poor workability in mixing. Therefore, to make workability better, a 1/4 of CMW coarse aggregate was replaced with normal aggregate which had a good particle shape, and a superplasticizer was added to the mix. Compressive strength and other mechanical properties of CMW concrete was very good. In conclusion, characteristics of CMW concrete was acceptable for use as a concrete structural material.

  • PDF

재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구 (Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates)

  • 이재승;나옥빈
    • 자원리싸이클링
    • /
    • 제24권5호
    • /
    • pp.63-71
    • /
    • 2015
  • 본 연구는 재생 굵은골재와 산업부산물인 급냉 제강슬래그 잔골재를 이용한 친환경 재생 콘크리트의 재료적 특성을 파악하고 적정 혼합비를 도출하는데 그 목적이 있다. 이를 위해서 재생 굵은골재의 치환율은 30%에서 50%까지 증가시켰으며, 급냉 제강슬래그 잔골재는 10%에서 50%까지 증가시켜서 물성실험을 수행하였다. 그 결과, 재생골재의 치환율이 증가함에 따라 강도가 감소하였으나 급냉 제강슬래그 잔골재의 혼입율을 증가함에 따라 강도가 증가됨을 알 수 있었다. 더불어 급냉 제강슬래그 잔골재의 적정 치환율은 압축강도 및 탄성계수 등을 고려했을때 20~30%로 판단되며, 재생 굵은골재의 치환율 증가에도 도움이 될 것으로 사료된다.

1종 경량골재콘크리트의 함수율과 내화특성 (Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete)

  • 송훈
    • 한국건설순환자원학회논문집
    • /
    • 제2권4호
    • /
    • pp.321-327
    • /
    • 2014
  • 경량골재콘크리트는 구조물의 자중경감을 목적으로 경량골재를 적용하여 제조한 콘크리트로 구조물의 고층화 및 대형화에 효과적으로 대응할 수 있는 장점이 있다. 하지만 경량골재는 다공체이므로 화재와 같은 고온에 노출되는 경우 수증기압이나 열응력에 의해 골재 주변으로 응력이 집중될 가능성이 커 폭렬이 발생하기 쉽다. 본 연구는 구조용 경량골재를 사용한 1종 경량골재콘크리트의 함수율과 내화특성과의 관계를 검토코자 하며, 실험결과 압축강도와 함수율이 높은 경량골재콘크리트는 폭렬의 가능성이 높기 때문에 흡수율이 작은 골재의 사용이나 폭렬방지를 위한 대책이 필요하다.

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구 (A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate)

  • 최연왕;정문영;임흥빈;황윤태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.