• 제목/요약/키워드: coarse graining method

검색결과 3건 처리시간 0.016초

유동성 재료의 동적 거동 해석을 위한 입자확대법 기반 DEM의 적용 (Application of DEM with Coarse Graining Method to Fluidal Material Behavior Analysis)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.23-30
    • /
    • 2017
  • PURPOSES : In this paper, the applicability of DEM to a coarse graining method was evaluated by simulating a series of minicone tests for cement paste. METHODS : First, the fundamental physical quantities that are used in a static liquid bridge model were presented with three basic quantities based on the similarity principle and coarse graining method. Then, the scale factors and surface tensions for six different sizes of particles were determined using the relationship between the physical quantities and the basic quantities. Finally, the determined surface tensions and radii were utilized to simulate the fluidal behavior of cement paste under a minicone test condition, and the final shape of the cement paste with reference DEM particle radii was compared with the final shape of the others. RESULTS : The simulations with adjusted surface tensions for five different radii of particles and surface tension showed acceptable agreement with the simulation with regard to the reference size of the particle, although disagreement increases as the sizes of the particle radii increase. It seems reasonable to increase the particle radii by at least 0.196 cm considering the computational time reduction of 162 min. CONCLUSIONS : The coarse graining method based on the similarity principle is applicable for simulating the behavior of fluidal materials when the behavior of the materials can be described by a static liquid bridge model. However, the maximum particle radius should be suggested by considering not only the scale factor but also the relationship of the particle size and number with the radius of the curve of the boundary geometry.

다중벽 탄소나노튜브의 역학적 거동에 관한 멀티스케일 전산모사 (Multi-scale Simulation on the Mechanical Behavior of Multi-walled Carbon Nanotubes)

  • 박종연;조영삼;김성엽;임세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.400-403
    • /
    • 2004
  • We present a coarse-graining model to describe the mechanical behaviors of multi-walled carbon nanotubes. To find the atomic configuration in membrane-like nanostructure i.e. carbon nanotube, we employ interpolation functions and the associated element-variables that are defined in the subdivided region. Tersoff-Brenner potential is adopted for interaction of bonded atoms and also van der Waals force for non-bonded interaction. Moreover, we simulate the coarse-graining multi-walled carbon nanotubes with defects and its result is compared with that of perfect multi-walled carbon nanotubes.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.