• Title/Summary/Keyword: coarse alumina

Search Result 23, Processing Time 0.016 seconds

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Mineralogy of Nodules in the Milyang Pyrophyllite Deposit, Gyeongsangnamdo, South Korea (밀양 납석광상에서 산출되는 단괴의 광물조성)

  • Moon, Hi-Soo;Lee, Kangwon;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.455-464
    • /
    • 1993
  • Some nodules occur in the Milyang pyrophyllite deposit which are hydrothermal alteration products by Late Cretaceous andesitic tuff. These nodules are divided into two types on the basis of mineral assemblages; diaspore and pyrophyllite nodules. The diaspore nodules consist mainly of diaspore, kaolinite, pyrophyllite and pyrite with a small amounts of wavellite and tourmaline. They are light purplish grey in color, ellipsoid in shape and range 1 cm to 15 cm in size. A small or large diffuse band exists in some nodules. The platy coarse-grained diaspore is intergrown with the fine-aggregated kaolinite in the central part of the nodule. It appears that the grain size become fine from center to margin. The pyrophyllite nodules, which have the same shape with diaspore nodules, consist dominantly of pyrophyllite accompanied by small amounts of quartz, kaolinite, svanbergite, wavellite, tourmaline and apatite. Chemical compositions of alteration zones and nodules show that the wall rock alteration involved mainly the removal of large quantities of silica and alkalies and small quantities of Ca, Mg and Fe. The sharp increase in the Al content of the nodules is the result of residual concentration of alumina by the leaching of the mobile components. The pyrophyllite nodules were formed in the fluid saturated with quartz as ${\mu}_{HK_{-1}}$ and ${\mu}_{H_{2}O}$ increase. Under this condition, the pyrophyllite-kaolinite-quartz assemblage was stable. Diaspores formed from pyrophyllites in the fluid undersaturated with quartz as ${\mu}_{H_{2}O}$ increases (decreasing temperature). Under this condition, diaspore-pyrophyllite-kaolinite assemblage become stable. The formation temperature of the nodules on the basis of mineral assemblage is estimated as $275{\sim}340^{\circ}C$.

  • PDF

Microstructural Characteristics of Oxidation Resistant Cr-Si-Al alloys in Cast State and after High Temperature Heating (내산화성 Cr-Si-Al합금의 주조상태 및 고온가열 후의 미세조직 특성)

  • Kim, Jeong-Min;Kim, Chae-Young;Yang, Won-Chul;Park, Joon-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.156-161
    • /
    • 2021
  • Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 ℃, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.