• 제목/요약/키워드: coal gasification apparatus

검색결과 3건 처리시간 0.018초

Cahn Balance를 이용한 급속 가열방식의 석탄가스화 장치 소개 (An Introduction of an Apparatus for Rapid Heating Coal Gasification)

  • 이중기;이성호;임태훈
    • 공업화학
    • /
    • 제2권4호
    • /
    • pp.393-398
    • /
    • 1991
  • 실제 실험 시간에 따른 시료의 무게변화와 생성가스의 조성 측정을 동시에 진행할 수 있는 실험실 규모의 장치를 칸 발란스를 이용하여 제작하였다. 급속 가열이 가능하도록 텅스텐 할로겐 등을 이용한 복사가열 방식을 채택하였고 시료 접시는 복사열을 충분히 흡수하도록 흑연을 사용하였다. 석탄가스화 실험조건에서 이 흑연이 반응기체와 반응하는 것을 막기위하여 실리콘나이트로 코팅하였고, 시료접시 바로 밑에 위치한 열전쌍에도 같은 방식으로 제작된 흑연 모자를 씌워 복사열 흡수능력이 서로 다른 흑연(시료접시)과 금속체(열전쌍) 사이에서 생길 수 있는 온도 측정의 오차를 최소화 하도록 하였다. 이 장치를 사용한 결과 상온에서 섭씨 800도까지 3 분 이내에 온도상승이 가능하였으며 시료 접시의 무게변화없이 실험중 석탄 시료의 무게 변화와 가스조성을 동시에 측정할 수 있었다.

  • PDF

가스화기에서 WGS 반응을 통한 합성가스의 수소 전환 (Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier)

  • 이시훈;김정남;엄원현;백일현
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF