• Title/Summary/Keyword: coal blasting

Search Result 18, Processing Time 0.021 seconds

Blasting wave pattern recognition based on Hilbert-Huang transform

  • Li, Xuelong;Wang, Enyuan;Li, Zhonghui;Bie, Xiaofei;Chen, Liang;Feng, Junjun;Li, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.607-624
    • /
    • 2016
  • Rockburst is becoming more serious in Chinese coal mine. One of the effective methods to control rockburst is blasting. In the paper, we monitored and analyzed the blasting waves at different blast center distances by the Hilbert-Huang transform (HHT) in a coal mine. Results show that with the increase of blast center distance, the main frequency and amplitude of blasting waves show the decreasing trend. The attenuation of blasting waves is slower in the near blast field (10-75 m), compared with the far blast field (75-230 m). Besides, the frequency superposition phenomenon aggravates in the far field. A majority of the blasting waves energy at different blast center distances is concentrated around the IMF components 1-3. The instantaneous energy peak shows attenuation trend with the blast center distance increase, there are two obvious energy peaks in the near blast field (10-75 m), the energy spectrum appears "fat", and the total energy is greater. By contrast, there is only an energy peak in the far blast field, the energy spectrum is "thin", and the total energy is lesser. The HHT three dimensional spectrum shows that the wave energy accumulates in the time and frequency with the increasing of blast center distance.

A Study on the Improvement of Surface Blasting Method in Pasir Coal Mine (파시르 탄광에서의 채탄발파공법에 대한 문제점 분석 및 개선방안 연구)

  • Choi Byung-Hee;Ryu Dong-Woo;SunWoo Choon
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • The typical blasting method adopted in Pasir Coal Mine is a surface blasting technique with a single free face. It means that there is only one free face, which is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In addition, the method also has the problem of lowering the blast efficiency compared to other methods such as bench blasting methods or ones with more than two free faces. In this respect, a project was launched to develop a new blasting method that is suitable for controling the ground vibration and enhancing the blast efficiency. As a part of the project, authors investigated the current blasting method as well as the overall pit developing process in the mine, and established some important guidelines that should be observed during the whole development process. This paper presents the details of the typical blasting pattern and the pit developing method in the mine, and suggests the guidelines determined from the results of the observations.

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.

Analysis of the Propagation Characteristics of Blast Vibrations in Pasir Coal Mine (파시르 탄광에서의 발파진동의 전파특성 분석)

  • Choi, Byung-Hee;Ryu, Dong-Woo;SunWoo, Choon
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.51-63
    • /
    • 2006
  • The typical blasting method adopted in Pasir Coal Mine is a surface blasting technique with a single free face. It means that there is only one free face, which is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In addition, the method also has the problem of lowering the overall blast efficiency compared to other methods such as bench blasting methods or ones with more than two free faces. In this respect, a project was launched to develop a new blasting method that is suitable for both controling the ground vibration and enhancing the blast efficiency. As a part of the project, we investigated the current blasting method of the mine, and have conducted field measurements of the ground vibrations from 12 biasts. This Paper presents the details of the typical blasting pattern and the Propagation characteristics of the ground vibration from the surface blasting in the mine. Especially, various predictive equations for peak Particle velocities that can be used to estimate the ground vibration level in the mine area were derived from the regression analyses using the measured ground vibration data.

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

Study on the propagation mechanism of stress wave in underground mining

  • Liu, Fei;Li, Lianghui
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • For the influence of the propagation law of stress wave at the coal-rock interface during the pre-blasting of the top coal in top coal mining, the ANSYS-LS/DYNA fluid-solid coupling algorithm was used to numerical calculation and the life-death element method was used to simulate the propagation of explosion cracks. The equation of the crushing zone and the fracturing zone were derived. The results were calculated and showed that the crushing radius is 14.6 cm and the fracturing radius is 35.8 cm. With the increase of the angles between the borehole and the coal-rock interface, the vibration velocity of the coal particles and the rock particles at the interface decreases gradually, and the transmission coefficient of the stress wave from the coal mass into the rock mass decreases gradually. When the angle between the borehole and the coal-rock interface is 0°, the overall crushing degree is about 11% and up to the largest. With the increase of the distance from the charge to the coal-rock interface, the stress wave transmission coefficient and the crushing degree of the coal-rock are gradually decreased. At the distance of 50 cm, the crushing degree of the coal-rock reached the maximum of approximately 12.3%.

A Study on Controlled Blasting Design in Construction Field (건설현장에서의 제조 발파 설계에 관한 고찰)

  • 이화창
    • Explosives and Blasting
    • /
    • v.14 no.1
    • /
    • pp.49-63
    • /
    • 1996
  • Blasting is a work that destruct an object by use of explosive. Its use covers a wid range, and it is applicable to blast the rocks, minerals, coal, steel and concrete structures, bridges, etc. To execute the blast plan most effectively, the properties of the object and the explosives should be well understood, and all the other conditions must ve incorporated in its design and plan. A safe blasting pattern and procedure should be selected considering the envirinmental effects and dther conditions. At the same time, a protective protective pricedures should be utilized to prevent the safety hazards such as the excessive blast vubration, air pressure, and the flying fragments. This study reviews the controlled blasting techniques in these regards.

  • PDF

Case Study for the Improvement of Tunnel Advance Rate & the Time Reduction of Working Process in Long Hole Blasting About Tunnel Excavation (터널 장공발파에서 굴진율 개선 및 작업공정 시간 단축 사례)

  • Kim, Hee-Do;Lee, Jun-Won;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.32-39
    • /
    • 2013
  • Generally, The way of long hole blasting is carried out in coal-face, basic excavation for dam, mine etc. Recently, this long hole blasting has been implemented in civil engineering for efficiency & economic feasibility. National express no.600 of Pusan outer high-express ${\bigcirc}$ construction site with four lanes of the length of 8km was also a site applied by long hole blasting. But After blasting, tunnel advance rate is less than 75%. As a result of that, Follow-up working time is influenced. Thereby, The total of working process is significantly so increased that planned excavation cannot be implemented many times. For not only improve excavation rate but reduce working process time in job site, we introduce blasting case which apply the ${\phi}36mm$ explosive suited for high desity of charging among long hole blasting in order to overcome mentioned problem.

Low frequency Long Duration Blast Vibrations and Their Effect on Residential Structures (지속시간이 긴 저주파 발파진동과 주거 구조물에 미치는 영향)

  • Roy M. P.;Sirveiya A. K.;Singh P. K.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.57-66
    • /
    • 2005
  • A major concern with blasting at surface mines is generation of ground vibration, air blast, flyrock, dust & fume and their impact on nearby structures and environment. A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Draglines and shovels with dumpers carry out the removal of overburden. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5km, the persistence of vibrations in the structures was substantially increased by more 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted into lower amplitude and reduced persistence of vibration in the structures.