• Title/Summary/Keyword: co-cultures

Search Result 334, Processing Time 0.029 seconds

Effects of Addition of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 on Baechu Kimchi Fermentation (Pichia anomala SKM-T와 Galactomyces geotrichum SJM-59 첨가가 배추김치 발효에 미치는 영향)

  • Mo, Eun-Kyoung;Ly, Sun-Yung;JeGal, Sung-A;Sung, Chang-Keun
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • To investigate the effects of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 on Baechu kimchi fermentation, lyophilized yeasts were added to Baechu kimchi and co-cultured at room temperature ($20{\pm}2^{\circ}C$) for 7 days. Desirable pH and acidity levels appeared by 3 days of fermentation in both the control culture and that with added G. geotrichum SJM-59. Furthermore, the culture with G. geotrichum SJM-59 sustained a desirable pH and acidity level until 5 days of co-culture. The pH of the culture with P. anomala SKM-T decreased slowly and was significantly higher than that of control throughout the experimental period. As fermentation time increased, the acidity of the culture with P. anomala SKM-T increased gradually. However, this culture maintained a desirable acidity level throughout the experiment. The number of lactic acid bacteria in the culture with P. anomala SKM-T was higher than in the culture with G. geotrichum SJM-59, or the control culture, throughout the experiment. The highest LA/TM ratio appeared after 3 nays of fermentation in the control culture, and on the 5 day of the yeasts added co-cultures. On sensory evaluation, no differences were detected between control and the culture with G. geotrichum SJM-59 arter 3 days of fermentation. The co-cultures with yeasts received high marks in umami taste. The co-culture with P. anomala SKM-T showed better texture properties than did the control culture. It was considered that fermentation times were delayed by addition of G. geotrichum SJM-59 or P. anomala SKM-T to Baechu kimchi fermentation.

Plant let growth, leaf stomata, and photosynthesis of grape rootstock '5BB' as affected by inoculum density in bioreactor cultures (포도 왜성대목 '5BB'의 생물반응기 배양에서 접종밀도가 식물체 생장, 기공 및 광합성 특성에 미치는 영향)

  • Choi, Eun-Jung;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • In bioreactor cultures of plants, inoculum density is an important factor affecting growth and proliferation of the plantlets. To maximize shoot growth and proliferation of grape rootstock '5BB' in bioreactors, inoculum density varied at 15, 30, 45 and 60 single nodes in a 3-liter scale balloon type bioreactor, respectively and cultured for 40 days. Results suggested that the growth and the photosynthesis of the plantlet were greatly affected by inoculum density in the bioreactor. The inoculum density of 45 nodes resulted in the greatest growth (910.4 mg/shoot FW, 764.4 mg/root FW) followed by 30 nodes. $CO_2$ assimilation rate, stomatal conductance, transpiration rate of the plantlet were also highest at the inoculum density of 45 nodes. Significant reduces in shoot and root growth (426.5 mg/shoot FW, 248.4 mg/root FW) were observed at the inoculum density of 60 nodes. When the inoculum density decreased by 15 nodes, plantlets were malformed due to hyperhydricity, resulting in the highest transpiration rate and the lowest $CO_2$ assimilation rate. The plantlets stressed by the inoculum density at 15 nodes and 60 nodes showed larger number and irregular shape of stomata compared to the plantlets inoculated with 45 nodes.

The Relation Between Sox9, TGF-${\beta}1$, and Proteoglycan in Human Intervertebral Disc Cells

  • Lee, Yong-Jik;Kong, Min-Ho;Song, Kwan-Young;Lee, Kye-Heui;Heo, Su-Hak
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.3
    • /
    • pp.149-154
    • /
    • 2008
  • Objective: The aim of this study is to elucidate the effects of transforming growth factor-${\beta}$ (TGF-${\beta}$)1 and L-ascorbic acid on proteoglycan synthesis, and the relationship between Sox9, proteoglycan, and TGF-${\beta}1$ in intervertebral disc cells. Methods: Human intervertebral disc tissue was sequentially digested to 0.2% pronase and 0.025% collagenase in DMEM/F-12 media and extracted cells were cultured in $37^{\circ}C$, 5% $CO_2$ incubator. When intervertebral disc cells were cultured with TGF-${\beta}1$ or L-ascorbic acid, the production level of sulfated glycosaminoglycan (sGAG) was estimated by dimethyl methyleneblue (DMMB) assay. The changes of Sox9 mRNA and protein levels via TGF-${\beta}1$ were detected by RT-PCR and Western blot analysis in each. Results: The amount of sGAG was increased with the lapse of time during incubation, and sGAG content of pellet cultured cells was much larger than monolayer culture. When primary cultured intervertebral disc cells in monolayer and pellet cultures were treated by TGF-${\beta}1$ 20 ng, sGAG content of experimental group was increased significantly compared to control group in both cultures. L-Ascorbic acid of serial concentrations (50-300 ug/ml) increased sGAG content of mono layer cultured intervertebral disc cells significantly in statistics. The co-treatment of TGF-${\beta}1$ and L-ascorbic acid increased more sGAG production than respective treatment. After treating with TGF-${\beta}1$, Sox9 mRNA and protein expression rates were significantly increased in disc cells compared with the control group. Conclusion: This study suggests that TGF-${\beta}1$ would increase sulfated glycosaminoglycan (sGAG) and other proteoglycans such as versican by elevating Sox9 mRNA and protein expressions in order.

Production of Herbicide-resistant Transgenic Plants from Embryogenic Suspension Cultures of Cucumber (오이의 배발생 현탁 배양세포로부터 제초제 저항성 형질전환 식물체 생산)

  • 우제욱;정원중;최관삼;박효근;백남긴;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To develop herbicide-resistant cucumber plants (Cucumis sativus L. cv Green Angle) embryogenic suspension cultures were co-cultured with Agrobacterium tumefaciens strain LBA4404 carrying a disarmed binary vector pGA-bar. The T-DNA region of this binary vector contains the nopalin synthase/neomycin phosphotransferase Ⅱ (npt Ⅱ) chimeric gene for kanamycin resistance and the cauliflower 35S/phosphinothricin acetyltransferase (bar) chimeric gene for phosphinothricin (PPT) resistance, After co-cultivation for 48 h, embryogenic calli were placed on maturation media containing 20 mg/L PPT. Approximately 200 putatively transgenic plantlets were obtained in hormone free media containing 40 mg/L PPT. Northern blot hybridization analysis confirmed the expression of the bar gene that was integrated into the genome of five transgenic plants. Transgenic cucumber plants were grown to maturity. Mature plants in soil showed tolerance to the commercial herbicide (Basta) of PPT at the manufacturer's suggested level (3 mL/L).

  • PDF

Invertase Production by Fed-batch Fermentations of Recombinant Saccharomyces cerevisiae

  • Koo, Ja-Hyup;Kim, Sang-Yong;Park, Yong-Cheol;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • Fed-batch fermentations with different feeding media were carried out in order to increase the productivity of invertase expression using a recombinant Saccharomyces cerevisiae containing plasmid pRB58. Two batch cultures showed the expression of the SUC2 gene at a low concentration of glucose, suggesting that glucose concentration could be used as a control variable in a fed-batch operation mode. In the fed-batch culture by feeding the basal medium, cell mass and specific invertase activity did not increase much as compared with the simple batch culture. A series of fed-batch cultures revealed that the sucrose-supplemented medium increased cell mass whereas the enriched medium did specific invertase activity. To capitalize on the synergism of the sucrose-supplemented medium and the enriched medium, the sucrose-supplemented enriched medium was used as a feeding medium. The fed-batch culture using this medium resulted in a 2.4-fold increase in cell mass and a 1.9-fold enhancement in specific invertase activity compared with those of the batch culture. The increase in cell mass and specific invertase activity led to a marked increase in total invertase activity, 250U/ml, which was 6.3 times higher than that of the batch culture.

  • PDF

Effects of Lactobacillus casei and Aggregatibactor actinomycetemcomitans against Streptococcus mutans according to the Concentration of Sucrose

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Background: Some studies confirm the reduction of the number of Streptococcus mutans in saliva and dental plaque by Lactobacillus, however, these effects are not always confirmed in in vitro and clinical studies, and only the risk of dental caries has been reported. Our in vitro study aimed to reveal microbial and biochemical changes in the single cultures of S. mutans, Lactobacillus casei and Aggregatibactor actinomycetemcomitans and co-cultures of S. mutans and L. casei or A. actinomycetemcomitans according to sucrose concentration. We also aimed to confirm the anti-oral bacterial and anti-biofilm activities of L. casei and A. actinomycetemcomitans against S. mutans according to sucrose concentration. Methods: S. mutans (KCCM 40105), L. casei (KCCM 12452), and A. actinomycetemcomitans (KCTC 2581) diluted to 5×106 CFU/ml were single cultured, and L. casei or A. actinomycetemcomitans applied at concentrations of 10%, 20%, 30% and 40% to S. mutans were co-cultured with selective medium containing 0%, 1% and 5% sucrose at 36.5℃ for 24 hours. Measurements of bacterial growth value and acid production, disk diffusion and biofilm formation assays were performed. Results: In the medium containing sucrose, the bacterial growth and biofilm formation by S. mutans, L. casei, and A. actinomycetemcomitans were increased. In contrast, 30% and 40% of L. casei in the medium containing 0% sucrose showed both anti-oral bacterial and anti-biofilm activities. This implies that L. casei can be used as probiotic therapy to reduce S. mutans in a 0% sucrose environment. Conclusion: The concentration of sucrose in the oral environment is important for the control of pathogenic bacteria that cause dental caries and periodontitis. To apply probiotic therapy using L. casei for S. mutans reduction, the concentration of sucrose must be considered.

Curcumin Inhibits Osteoclastogenesis by Decreasing Receptor Activator of Nuclear Factor-κB Ligand (RANKL) in Bone Marrow Stromal Cells

  • Oh, Sora;Kyung, Tae-Wook;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.486-489
    • /
    • 2008
  • Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the co-culture system, and to reduced expression of RANKL in $IL-1{\alpha}$-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin $E_2$ ($PGE_2$) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.

Experiences with Some Toxic and Relatively Accessible Heavy Metals on the Survival and Biomass Production of Amphora costata W. Smith

  • Mandal, Subir Kumar;Joshi, Vithaldas Hemantkumar;Bhatt, Devabratta Chandrashanker;Jha, Bhavanath;Ishimaru, Takashi
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.471-477
    • /
    • 2006
  • Amphora costata W. Smith 1853 is a down thrown diatom species and also known as metal corrosive ship-fouling organism. A. costata was isolated from Alang ship breaking yard, Alang and evaluated the toxicity tolerance and growth responses of the cultures exposed to different doses of toxic and relatively accessible heavy metals, such as Fe, Mn, Cd, Co, Cu, Zn, Ni, and Pb in the constantly monitored laboratory culture conditions. The strongest toxic effect was observed on A. costata exposed to Cd even at relatively low concentrations as compared to other metals. The following trend of decreasing order of toxicity i.e. Cd>Zn>Ni>Co>Pb>Cu>Fe was observed, when they were exposed to equal concentration and expose time.

Thymidine Production by Corynebacterium ammoniagenes Mutants

  • Song, Kyung-Hwa;Kwon, Do-Young;Kim, Sang-Yong;Lee, Jung-Kul;Hyun, Hyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.477-483
    • /
    • 2005
  • Corynebacterium ammoniagenes ATCC 6872, which does not accumulate pyrimidine nucleoside or nucleotide, was metabolically engineered to secrete a large amount of thymidine. Characteristics of 5-fluorouracil resistance ($FU^r$), hydroxyurea resistance ($HU^r$), trimethoprim resistance ($TM^r$), thymidylate phosphorylase deficiency ($deoA^-$), inosine auxotrophy ($ino^-$), 5-fluorocytosine resistance ($FC^r$), thymidine kinase deficiency, and thymidine resistance ($thym^r$) were successively introduced into mutant strains KR3 and DY5T9-5, and shake-flask cultures were able to accumulate 408.1 mg/l and 428.2 mg/l of thymidine, respectively, as a major product. The mutant strains did not accumulate thymine at all and accumulated less than 10 mg/l of other pyrimidine nucleosides, such as cytosine, cytidine, and deoxycytidine, as byproducts.

Regulatory Effects of Cyclic AMP on Osteoclast Formation (조골세포내 cAMP 농도 변화가 파골세포 형성에 미치는 영향)

  • Chun Yunna;Yim Mijung
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.109-113
    • /
    • 2005
  • In the present study treatment of IBMX, a phosphodiesterase (PDE) inhibitor, alone induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. However, treatment of IBMX in combination with prostaglandin $E_2\;(PGE_2)$ inhibited osteoclast formation in a dose-dependent manner. Among various isozyme-specific PDE inhibitors, a PDE4 specific inhibitor, rolipram, showed similar effects as IBMX on osteoclast formation. To address the involvement of cyclic adenosine monophosphate (cAMP) in osteoclast formation, cAMP concentration in calvarial osteoblasts was investigated. When calvarial osteoblasts were co-cultured with IBMX alone or in combination with $PGE_2$, the patterns of cAMP concentration in calvarial osteoblasts were differ each other suggesting that cAMP in calvarial osteoblasts subtly regulates osteoclast formation.