• Title/Summary/Keyword: co-citation networks

Search Result 36, Processing Time 0.021 seconds

Collaboration Networks and Document Networks in Informetrics Research from 2001 to 2011: Finding Influential Nations, Institutions, Documents (계량정보학분야의 협력연구 네트워크 및 문헌네트워크 분석 : 국가, 기관, 문헌단위 분석)

  • Lee, Jae Yun;Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.179-191
    • /
    • 2013
  • Since information scientists have begun trying to quantify significant research trends in scientific publications, '-metrics' research such as 'bibliometrics', 'scientometrics', 'informetrics', 'webometrics', and 'citation analysis' have been identified as crucial areas of information science. To illustrate the dynamic research activities in these areas, this study investigated the major contributors of '-metrics' research for the last decade at three levels: nations, institutions, and documents. '-metrics' literature of this study was obtained from the Science Citation Index for the years 2001-2011. In this analysis, we used Pathfinder network, PNNC algorithm, PageRank and several indicators based on h-index. In terms of international collaborations, USA and England were identified as major countries. At the institutional level, Katholieke University, Leuven and the University of Amsterdam in Europe and Indiana University and the Office of Naval Research in the USA have led co-research projects in informetrics areas. At the document level, Hirsch's h-index paper and Ingwersen's web impact factor paper were identified as the most influential work by two methods: PageRank and single paper h-index.

Domain Analysis on the Field of Open Access by Co-Word Analysis (동시출현단어 분석 기반 오픈 액세스 분야 지적구조에 관한 연구)

  • Seo, SunKyung;Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.24 no.1
    • /
    • pp.207-228
    • /
    • 2013
  • Due to the advance of scholarly communication, the field of open access has been studied over the last decade. The purpose of this study is to analyze and demonstrate the field of open access via co-word analysis. The data set was collected from Web of Science citation database during the period from January 1998 to July 2012 using the Topic category. A total of 479 journal articles were retrieved and 8,643 noun keywords were extracted from the titles and abstracts. In order to achieve the purpose of this study, network analysis, clustering analysis and multidimensional scaling mapping were used to examine the domain and the sub-domains of open access field. 18 clusters in the network analysis are recognized and 4 clusters are shown in the map of multidimensional scaling. In addition, the centrality analysis in the weighted networks was used to explore the significant keywords in this field. The results of this study are expected to demonstrate and guide the intellectual structure and new approaches of open access field.

Analyzing Research Trends of Domestic Artificial Intelligence Research Using Network Analysis and Dynamic Topic Modelling (네트워크 분석과 동적 토픽모델링을 활용한 국내 인공지능 분야 연구동향 분석)

  • Jung, Woojin;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.141-157
    • /
    • 2021
  • In this study, we aimed to understand research trends of domestic artificial intelligence research. To achieve the goal, we applied network analysis and dynamic topic modeling to domestic research papers on artificial intelligence. Among the papers that have been indexed in KCI (Korean Journal of Citation Index) by 2020, metadata and abstracts of 2,552 papers where the titles or indexed keywords include 'artificial intelligence' both in Korean and English were collected. Keyword, affiliation, subject field, and abstract were extracted and preprocessed for further analyses. We identified main keywords in the field by analyzing keyword co-occurrence networks as well as the degree and characteristics of research collaboration between domestic and foreign institutions and between industry and university by analyzing institutional collaboration networks. Dynamic topic modeling was performed on 1845 abstracts written in Korean, and 13 topics were obtained from the labeling process. This study broadens the understanding of domestic artificial intelligence research by identifying research trends through dynamic topic modeling from abstracts as well as the degree and characteristics of research collaboration through institutional collaboration networks from author affiliation information. In addition, the results of this study can be used by governmental institutions for making policies in accordance with artificial intelligence era.

An Overview of Research Trends in 'Aesthetic Science-Education': Focused on Bibliographic Analysis Using Bibliometrix Package in the R Program (미적 과학교육 연구 동향 분석 -R 프로그램의 Bibliometrix 패키지를 활용한 상세 서지분석을 중심으로-)

  • Kyungsuk, Bae;Jun-Young, Oh;Jaehyeok, Choi;Yejin, Moon;Yeon-A, Son
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.5
    • /
    • pp.543-555
    • /
    • 2022
  • This study aims to identify the trends in 'Aesthetic Science-Education' research through bibliographic analysis and provide future implications for research in this field. To this research, 100 studies were extracted using the search function of the Web of Science provided by Clarivate Analytics. Detailed bibliometrics was analyzed using the Bibliometrix package of the R program. As a result of the analysis, the average number of papers increased from 1993 to 2022, and academic journals in which related papers were published were evenly distributed locally. As a result of keyword analysis, papers with top citations, author collaboration networks, and literature co-citation networks, Aesthetic Science-Education could be classified as inducing aesthetic experience by integrating art in science education, and categories using 'formalist aesthetic' and 'emotional response'. The implications derived from this study are as follows: first, the aesthetic aspects of science should be actively studied to emphasize 'Agency' and 'Active Learning' in future science education. Second, it is necessary to develop a new approach to science education by further utilizing the 'formalist aesthetic' of science in science education. Third, the aesthetic aspect of science can change the perception of the Nature of Science of teachers, pre-service science teachers, and students. Fourth, it is necessary to discover implications for utilizing aesthetic aspects in science education through extensive research on the aesthetic aspects of science for teachers, students, and pre-service teachers. This study is meaningful because it provides an overview of the 'Aesthetic Science-Education' research to realize the above implications.

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.